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FOREWORD

This report is an interim report which summarizes one
phase of research that is being carried out at Purdue
University in the area of communication theory under NASA

Grant N8G-553.
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ABSTRACT

This research is concerned with the effects of frequency
selective fading on binary digital communication systems and
with a method of alleviating some of these effects. The fre-
quency selective fading is assumed to be describable in
terms of a filter whose transfer function is a sample func-
tion from a complex Gaussian random process. Matched filter
detection at the receiver is assumed to be employed.

Although the analytical methods used in this report are gen-
eral, DPSK signaling is assumed for all the quantitative
results.

In order to determine the probability of error for this
system, a technique due to Bello and Nelin is used. This is

applied to three cases:

1., Square pulse signaling and Gaussian-function-
shaped channel frequency correlation function.
2, Sqguare pulse signaling and sin(x)/x - shaped
channel frequency correlation function.
3. Raised cosine signaling and sin(x)/x - shaped
channel frequency correlation function.
The results of these three cases are compared and it is

shown that significant differences in error probability
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result from using the two different signals with the same
channel while very little difference in performance results
from using the two different channels with the same signal.

For the three cases mentioned above, an approximate
error probability expression developed by Sunde is compared
to the exact results. It is shown that this approximation
does not provide a good estimate of the error probability
when the frequency selective fading is of importance.

Next, some experimental results from computer simulations
of communication systems subject to frequency selective fad-
ing are given. The first of these is an investigation of the
relative effects of the amplitude and phase distortion intro-
duced in such a system. It is shown that the phase distor-
tion component has a deleterious effect on the system's per-
formance while the amplitude distortion has a slight benefi-
cial effect. These results provide the motivation for the
development of an adaptive scheme for counteracting the
effects of frequency selective fading. This is done by meas-
uring the residual delay and delay distortion introduced by
the channel fading with pilot tones and then using phase cor-
rection networks at the receiver to compensate for the meas-
ured phase characteristic. It is shown that this technique
can result in error rate improvement factors of twenty or
data rate increases by a factor of two to three. 1t is also
shown that the system which corrects for both delay and
linear delay distortion provides very little improvement

over the system which corrects for delay only.



CHAPTER I: INTRODUCTION

1.1 General Description of the Problem

Communication channels which exhibit severe fading
effects have been in use for several years. Important exam-
ples of these are the widely-used h-f channels and tropo-
spheric scatter channels (l1). Severe fading effects have
also been experimentally observed on an orbital dipole
channel (2) and a lunar reflection channel (3). There is
also some evidence that fading due to multipath propagation
through the atmosphere may exist in certain earth-space com-
munication channels (4). With increasing use of telemetry,
digital transmission of voice signals, and long-distance
transmission of computer data, it is apparent that digital
communication over such links will become more prevalent.
Furthermore, with the increasing digital data rates being
used in modern telemetry, computer, and telephone transmis-
sion equipment, it is expected that attempts at very high
data rate transmission through such channels will be made.
With the advent of such wideband transmission, the frequency
selective beﬁavior of the above-mentioned channels will play
a great role in determining the design and performance of the
systems to be used. It is therefore becoming increasingly

important to understand the basic effects that



frequency selective fading has on digital transmission
schemes and to determine methods of minimizing these effects.
Frequency selective fading can be defined as the phenom-
enon which occurs in fading channels when deep fades can be
observed at some frequencies of transmission while relatively
little fading is occurring at other frequencies in the band.
If signals of wide bandwidths are transmitted over such a
channel, then since the channel transmittance at one point in
the transmission band may differ significantly from that at
some other point, the received signal may be effectively
transmitted through a frequency selective filter. This will
result in distortion in the shape of the received pulse.
When such distortion occurs in a digital communication system
employing a matched filter-sampler receiver configuration,
then the probability of correctly classifying the received

signal is reduced due to two effects. These are:

1. Mismatch of the received signal's shape
felative to the shape of the signal for
which the matched filter is designed and
2. Intersymbol interference due to undesirable
tails created in the pulse response char-
acteristic of the system.
These distortion effects together with the effect of fluctua-
ting strength of the received signal (even if not distorted)
are the two effects which determine the basic limitations on

error rate performance of digital communication systems




employing receivers of the above type. The purpose of the
research discussed in this report is to compare‘exact and
approximate methods of determining the error rate perform-
ance of such communication systems and to evaluate a novel
method of reducing the effects of a frequency selective

channel on these systems,

1.2 Outline of Previous Work

Much of the results to date have been based on consider-
ing the output of the fading channel to be a Gaussian random
process. This random process can be related to the channel
transmittance which will then be, in general, a complex-
valued function of time and frequency. Using this represen-
tation, Bello and Nelin (5) were able to determine error
probabilities for both incoherent FSK and differentially
coherent PSK systems operating over such a channel. These
results were based on the known Gaussian properties of the
received signal and are valid for any order of postdetection
diversity combining in the receiver system. Sunde (6) con-
jectured that the most serious distortion effects in such
a system can be attributed to the phase distortion imposed
on the transmitted signal by the channel. He further postu-
lated that for narrow enough bandwidths, linear delay distor-
tion alone could be considered to cause the pulse distortion.
This is equivalent to approximating the phase response func-
tion by a truncated Taylor's series expansion about the cen-

ter frequency of the transmission band. Thus using the



statistical properties of the linear delay distortion in a
Gaussian fading channel, he developed an approximation to the
error probability.

Hingorani (7) has e#tended the work of Bello and Nelin
to the case of simultaneous time and frequency selective fad-
ing and an arbitrary number of independent diversity paths,
where each diversity branch has identical statistics and may
contain a specular component. lis method was to reduce the
receiver decision variable to a canonic form employed by
Stein (8).

Several ideas have been advanced in an effort to try to
reduce the effects of distortion in fading channels. Most
of these are transmitted reference techniques where separate
sounding signals are transmitted along with the data signal
in order that the receiver may gain some knowledge of the
state of the channel and use this to process the received
signal in a better manner. Walker (9) considered the perform-
ance of a "frequency differential"” system in which a sinusoid
is transmitted near a PSK signaling channel and then trans-
lated at the receiver for correlation with the signal wave-
form. He derived the maximum likelihood receiver for this
type of transmission and determined its performance in the
presence of a fading channel plus noise. Hancock and
liingorani (10) considered a transmitted reference communica-
tion system employing a time-variant multipath channel and a
general reference-message signal combination for which they

derived the "one-shot" Bayes receiver. For Gaussian




multiplicative disturbance, white additive Gaussian noise,

and binary PSK, the error probabilities for this receiver
were also derived. They later extended this work by determin-
ing the Bayes receiver for sequential transmission of sig-
nals through a time-variant random channel whose delay spread
is less than one baud (ll)., Spilker (12) investigated the
effect of combined time and frequency offset between the
information and reference signals for transmitted reference
system communication through certain time-variant channels
representable as tapped delay lines.

Descriptions of systems which have been experimentally
shown to reduce error probability in communication systems
employing selective fading channels have also been described
in the literature. Price and Green (13) described the RAKE
system, which used wideband signals to determine the path
structure of an h-f radio channel and which uses this infor-
mation in a tapped delay line recombining system at the
receiver. This results in a receiver which can be inter-
preted either as a diversity combining operation or as an
adaptive matched filter. Hollis (14) described a transmitter-
receiver combination which combats the time spreading effects
of fading channels by stepping the mark and space frequencies
of an FSK link, thus reducing the intersymbol interference

at the receiver's detector,



1.3 Review of Related Work

The problem of transmitting communication pulses
through channels with frequency selective properties, but
which are time invariant has received some attention in
recent years. Often in these works the term "channel with
memory" is used to describe what we have called "channel with
frequency selective properties" above. Aein and Hancock (15)
attacked this problem by deriving the optimum linear receiver
filter for correlation detection of the overlapping signals
which arrive at the receiver. They also considered a
decision directed receiver structure which attempts to sub-
tract out the pulse tails which interfere with the pulse
being processed by the detector. Schwarzlander (16) then
investigated the problem of designing signals to be trans-
mitted through the channel which woulé reduce the degrading
effects of intersymbol interference at the receiver. He
succeeded in determining, from the class of signals which
result in time-limited pulses at the channel output (i.e.,
they create no intersymbol interference), the signal which
maximizes the pulse energy present at the receiver input.
That is, he determined the pulse which minimizes probability
of error out of the above-mentioned class of pulses. Quincy
(17) then investigated a joint optimization problem wherein
an attempt was made to simultaneously optimize the receiver
structure and the transmitted signal shape. He formulated
the optimum Bayes receiver for pulses with intersymbol inter-

ference, and using a variational technique found the signal




shape which, for a given allowed amount of intersymbol inter-
ference, maximized the energy transferred through the chan-
nel. It should be noted that all the above work is based on
the assumption that the channel filtering operation is time
invariant and completely known to the system designer.

The transversal equalizer has received much attention
recently as a possible engineering solution to the problem
of intersymbol interference in data transmission systems.
Rappeport (18), Lucky (19, 20), Schreiver et al. (21), and
Gorog (22) have suggested designs for transversal equalizer
systems which could be automatically adjusted to correct for
channel-induced distortion. These adaptive equalizers have
been developed mainly for telephone transmission channels,
but have not yet been applied to frequency selective fading

radio channels.

1.4 Mathematical Assumptions

The general form of the communication system which will
be considered in this report is shown in Figure l.l In this
figure, a very general receiver structure, known as the
canonic receiver, is shown. Although we will later specialize
our results to the differentially coherent phase shift keying
(DPSK) case, the canonic receiver is shown here to indicate
the very general class of modems that can be analyzed by

techniques discussed in this report. For example, the DPSK

lln this figure and throughout this report, the symbol
"+#% denotes complex conjugate.



Message a, b, . x(t) Channel
Source = Encoder L1, Transmitter Filter [*
Information u(t)
Filter (t)
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t = 1Tb
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q; = o, zi <0
q; = 1, Zi > 0
Figure 1. System to be Considered.




receiver is realized if the information filter is matched to
the transmitted pulse, the reference filter is a similar
matched filter plus a delay of one baui, and the combiner
gains are a = 0, b = 0, ¢ = 1. The canonic receiver becomes
an incoherent FSK receiver if the information and reference
filter are matched to the two FSK signals and a = -b, ¢ = 0.
Further applications of the canonic receiver model are dis-
cussed in (8).

In the system shown, all time functions are represented
by their complex envelopes. Thus, for example, the actual
output of the waveform generator we are attempting to model

is Re(x(t)ej“’ot

} where wg is the frequency in radians per
second. The value of w, is unimportant, but it is necessary
to assume that.it is larger than the highest frequency compo-
nent in x(t).

In this system the message source emits a sequence of
Linary symbols {ak}; el a, =0, 1. The elements of the
sequence are emitted at a rate of B symbols per second. The
probability of occurrence of either of the two symbols is
1/2, independent of the value of any other symbol in the
sequence. The encoder is included in order that differen-
tially coherent modems could be included in this model along

with other schemes. Thus with DPSK the bi's are formed

according to the following rule:

b = a &b ' all k (1-1)
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where ® denotes addition modulo two and a is the binary com-
plement of a. In FSK the encoder would set bk==ak for all k.

The transmitter is assumed to be representable as an
ideal waveform generator which selects one of two anticor-
related waveforms, s ;(t) or s, (t), and applies it to the
input of the channel filter. The selection of the waveform
to be applied is determined by the symbol having been emitted
by the encoder. Thus the waveforms are applied to the chan-
nel filter at a rate of B waveforms per second.

The channel filter is assumed to be a time-variant lin-
ear system completely specified by an associated time-variant
impulse response h(tr,t), defined to be the complex envelope
of the filter's response at time t to an impulsé forcing func-
tion applied t seconds earlier. We further assume that h(r,t)
is a sample function from a complex-valued Gaussian random
process. Throughout this work it will be assumed that the
rate of variation of h(r,t) with t, that is, the rate of time
variation of the channel, is much slower than the signaling
rate of the transmitter. Thus we can replace the time-variant
impulse response h(t,t) by a random but time-invariant filter
whose impulse response is h(t). Further descriptions of the
channel filter are discussed in the following section.

After the transmitted waveforms are passed through the
channel filter, additive noise is introduced. This noise is
assumed to be zero-mean, white Gaussian noise with double-
sided spectral density N, watts/cps. It is also assumed to

be statistically independent of the random effects of the
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channel filter. We can now visualize two distinct effects
of the channel on the communication system. The first
effect, the noise, adds a random process to the signal caus-
ing unwanted fluctuations at the detector output. Second,
the channel filter distorts the transmitted signal causing
pulse-shape mismatch and loss of signal power, both of which
tend to increase the error probability.

These two independent effects can be seen by examining
a typical curve of error probability versus signaling rate,
assuming signal energy per bit is held constant. Such a
curve is shown in Figure 2. This curve is characterized by a
horizontal asymptote to the left which is the error probabil-
ity for the system with flat Rayleigh fading and additive
noise. On the right the error probability curve is asymp-~
totic to a line of increasing error probability as data rate
increases. This line represents the lowest probability which
can be achieved no matter how much the signal-to-noise ratio
is increased. This irreducible error probability is caused
by distortion and intersymbol interference effects which
result from the selective fading of the channel. Thus, since
the selective fading phenomenon is related to the width of
the data transmission bandwidth, the irreducible error prob-
ability is a function of the data rate. The presence of the
horizontal asymptote indicates the effect of additive noise
and the varying received signal amplitude. That is, it
represents the error probability of such a system under the

assumption of additive Gaussian noise and flat Rayleigh
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Error
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Figure 2. Typical Curve of Error Probability vs Data Rate.
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fading. The flat fading error probability, of course, is
independent of the signaling rate, which is the reason that
the left asymptote is a constant.

. The curve of Figure 2 leads to an interesting interpre-
tation of the problem of communication through selective fad-
ing channels. For very slow data rates, the signaling band-
width is so small that the frequency-dependent properties of
the channel filter are unimportant - the channel filter trans-
mittance is essentially a constant across the entire signal-
ing band. In this case, only the additive noise and the vary-
ing magnitude of the channel transmittance at the carrier
frequency are of importance. Thus the error probability is
only dependent on the average signal-to-noise ratio at the
detector input. For larger data rates, the signal bandwidth
becomes larger, and the fact that the channel filter pos-
sesses a frequency-dependent transmittance causes distortion
and intersymbol effects to become important. As the data
rate is further increased, these effects ultimately predom-
inate. The purpose of this report is to investigate a
method of reducing the irreducible error probability in such
systems and to investigate some methods of calculating the

error rate expressions for these systems.

1.5 Channel Representation

As discussed in the previous section, we will assume
that the channel filter is a linear time-variant system, and

is therefore completely specified by its time-varying
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equivalent low-pass impulse response h(x,t)l. We further
assume that h(r,t) i1s a sample function from a complex zero-
mean Gaussian random process which is wide-sense stationary
in the variable t. Thus, the statistical characteristics of
the channel fiitet can be completely specified by the corre-
lation function P(r,u,a) = E{h(1,t)h*(t+u,t+a)]. In order to
examine the frequency domain properties of the channel, we
can define an equivalent low-pass time-variant transfer func-
tion as

H(f,t) = ) hir,t)e

-

-j2nf1dT (1-2)

Justification for naming H(f,t) the time-variant transfer
function comes from the fact that H(f,t) is simply the com-
plex amplitude of the channel filter's response at time t to
the sinusoidal input ejz"ft. Since H(f,t) is defined as a
linear transformation on a sample function from a zero-mean
Gaussian random process, then it too is a sample function
from a zero-mean Gaussian random process. Therefore its sta-
tistical characteristics are completely described by its cor-

relation function defined by

R(E£,£,t) = E[H(f,,to)H" (fo+f,t5+t) ] (1-3)

lIn all communication systems there is some delay

between the time of transmission to the time of reception of
the signals. In the systems we are considering, we may sep-
arate this delay into a constant average delay and a randomly
variant delay whose average value is zero. Throughout this
work, h(i,t) is assumed to be the true impulse response of
the physical channel filter with the unimportant constant
delay component removed.
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We now assume that H(f,t) is wide-sense stationary in the
variable f. Thus the correlation function R is no longer a
function of f43 and can be written R(f,t). This stationary
assumption on H(f,t) implies that the correlation function P

has a special form (23). We can write
P(r,u,a) = P(T,G)'G(u) (1-4)

where §(u) is the Dirac delta function. We will call R and
p the frequency correlation function and the delay spread
correlation function respectively. It can be shown that R

and p possess the following Fourier transform relationship
R(f,t) = J plr,t)e 12 14, (1-5)

The frequency correlation function is quite important since
it provides information about the nature of the frequency
selective fading that takes place in the channel. This is
true because R(f,t) indicates the degree of decorrelation to
be expected in the channel response at the two frequencies
fo and £, + £ at time t. Thus if R(f,t) is small, then if a
signal is transmitted through the channel which possesses
significant spectral components at the two frequencies f; and
fo + £, we may expect it to undergo significant frequency
selective distortion. For this reason, it is convenient to
determine some measure of "width" of this correlation func-
tion to indicate the range of f-values over which R(f,t)

remains reasonably large. This width is usually called the
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coherence bandwidth of the channel and is assumed to be
related to the maximum bandwidth which a signal can occupy
if it is to be reliably transmitted through the channel.
Several measures of coherence bandwidth are discussed and
compared in Section 2.5.

Under the assumption that the channel varies slowly
enough that time-invariant analysis of the filter is valid,

we cah write

h(:,t) — h(x)
H(f,t) - H(f)
R(f,t) > R(f) (1-6)

P(f,u,a) m—— P(T'U)

plt,a) » pl(1)

Throughout this report, this quasi time-invariant, or "slowly-
varying" assumption will be used in the channel models con-

sidered.

1.6 Summary of the Report

The major part of this report is devoted to an evalua-
tion of the performance of an adaptive receiver scheme which
reduces the intersymbol effects introduced by a frequency
selective channel. The adaptive receiver considers the fre-
quency selective channel filter to be approximately modeled
by only its delay and delay distortion components. In order
to compare the adaptive systems investigated with equivalent

systems containing no adaptive features, and also to check
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the operation of the computer simulation programs used in
this study, a detailed study of the theoretical performance
of non-adaptive systems was undertaken. First, the technique
of Bello and Nelin was used to determine the exact theoret-
ical performance of non-adaptive systems under study. This
work appears in Chapter II. Chapter III contains a compari-
son of Sunde's approximation to the error probability in a
frequency selective fading system with the exact error prob-
abilities caléulated in Chapter I1I. In Chapter IV the com-
puter simulation program developed for this work is discussed.
Then experimental verification of an error rate expression
given in Chapter II is shown, along with some other experi-
mental results on non-adaptive fading channel communication
systems which cannot be evaluated analytically. Chapter V
contains a description of a novel adaptive communication
scheme for use with frequency selective fading channels and
presents experimental performance curves for the proposed
system. In Chapter VI the major conclusions of this report
are summarized and some suggestions for further work in the

area are given.
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CHAPTER II: EXACT ERROR PROBABILITIES FOR

SELECTIVE FADING SYSTEMS

2.1 Method of Computation of Error Probabilities

This report is devoted to investigation of the accuracy
of the Sunde approximate error expression and to an investi-
gation of the usefulness of linear delay distortion correc-
tion for fading channel communication systems. Fundamental
to both of these investigations is a comprehensive knowledge
of the exact error rate behavior of such communication systems,
For this reason this chapter presents a method of calculating
such error probabilities and the application of this method

to three specific cases. There are:

l. Square pulse signal and channel with Gaussian
frequency correlation function,
2. Square pulse signal and channel with sin(f)/f
frequency correlation function, and
3. Raised cosine signal and channel with sin(f)/f
frequency correlation function.
All three cases are for differentially coherent phase shift
keying systems. The techniques to be employed in these error
calculations were first presented by Bello and Nelin (5), in

which case one above was investigated. However, in their
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paper and in the subsequent corrections, some of the expres-
sions are in error. To the author's knowledge, the error
probabilities for cases two and three above have not been
calculated before.

Since the DPSK case is being considered, we can for sim-
plicity redraw the canonic receiver of Figure 1 in the form
of a aifferentially coherent matched filter receiver as
shown in Figure 3.

Now the error probakbilities are computed by computing
the probability that z; > 0 given that a;, = 0 and the proba-
bility that Z; < 0 given that a; = 1. Since we are assuming
that a sequence of binary digits is being transmitted, the
intersymbol interference effects of adjacent pulses must be
included in the probability computations. Thus we must com-
pute several error probabilities, each conditioned on one of
the possible transmitted sequences of pulses.

At this point we must restrict our consideration to
include only the intersymbol interference arising from
pulses transmitted either immediately before or after the
binary digit of interest. Since two pulses are required to
transmit one binary digit, we will need to compute error
probabilities conditioned on various sequences of four trans-
mitted pulses. This restriction to consideration of only
adjacent pulses implies that we are restricting ourselves to
situations where the selective fading is mild enough to war-
rant this assumption. This in turn can be related to a

restriction on d - i.e., that the final expression will be
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considered valid only for values of d below some maximum.
This maximum value of d is either estimated or computed
exactly in Appendices A, B, and C for each of the thrée
cases considered. 1In each of these three cases, it will be
seen that all values of d which are of practical interest
satisfy this restriction.

Since we have assumed that the probabilities associated
with the ai's are time-invariant and the channel impulse
response together with the additive white noise are station-
ary, we can compute the error probabilities for our system
by computing the error probability associated with the trans-
mission of binary digit a,. Thus, we must concern ourselves
with the detection of the sequence bg,b;. The assumption
made above that only adjacent pulse intersymbol interference
need be taken into account means that it will be necessary to
take into account the transmitted sequence b_,,bg,b;,b;. It
will be convenient to define this subset of the modulation
sequence as S. Figure 4 illustrates a possible received wave-
form (in the absence of noise) for a particular sequence S.l

We now define

Papeq = Prlerror occurs |S = (a,b,c,d)]

lwe will define by to be the modulation symbol corre-
sponding to the pulse whose peak value occurs at (k - %)Tp
sec. or, in the case of a square signaling pulse, b, corre-
sponds to the pulse transmitted during the time interval
((k - l)Tb,kal.
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Defining b to be the binary compliment of b, we then

have

(2-1)

Papgc = PrlZ1 > 0]s = (a,b,b,c)]

Pappe = PrlZ1 < 0|s = (a,b,b,c)]
We also define

po = Prig; = 1| a; = 0]

(2-2)

p; = Prlq, = 0| a; = 1]}

Bello and Nelin have shown that two forms of symmetry

exist in the conditional probabilities above. These are

pabcd = pchE

(2-3)

Pabcd © Pdcba

Thus, recalling that we have assumed that each ai can be a
"1" or a "0" with equal probability and that the ai's are

statistically independent, we can write

1

Po = 7 [Poio1 + Pir1oo * 2Po100]
1

P1 = 7 [Porio * Pii11 * 2po111]

(2-4)

Finally, the system probability of error can be written

P = 3(po + p1) (2-5)
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Now using the fact that the signals u(t) and v(t) are
Gaussian, we can write the probability required to evaluate

the above expressions as follows 124):

- 1
Prig; £ 0 = 75
(2-6)
1 _ 1
Friqg > O =1 -7 5xw 7w

where

R and R' can be considered to be "equivalent" signal-to-
noise ratios in the given system, since they enter into the
probability expressions in a manner analogous to the way the
SNR enters into the error probability expressions in the flat

fading case. Thus, we may write

ool i o

Pabbe © 3 ¥ﬁ_abbc
(2=7)
- 1l
Papbe 2+ R'

abbc

where Rabbc is the value of R given that S = (a,b,b,c).
The R's are related to the moments of u and v as fol-

lows (24):

2(u¥v + v¥u)

[(afv + v*W2 + 4(Jul? + Jv|? - |u*v|2)% = (a*v + v*u)

(2-8)
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To computeRabcd using this equation, the values of TEFT,
TvlZ, ana u¥*v given that S = (a,b,c,d) are inserted in the
expression, The maments of u and v are functions of the
channel frequency correlation function R(f), the additive
noise spectral density N;, the transmitted signal energy E,
the ratio of the signaling rate to the coherence bandwidth of
the channel d, and the shape of the transmitted signal. For
convenience in later expressions we define a detector input

signal-to-noise ratio as

- average signal energy per pulse at detector input
additive noise spectral density

We will consider two different frequency correlation
functions - the Gaussian-function (G-F) freqdency correlation
function and the sinc-function (S-F) frequency correlation
function.

l. G-F frequency correlation function

For this case, R(f) is defined by
R(f) = 202 expH4f£?/B2) (2-9)

The corresponding delay spread correlation

function is

p(r) = of /¥B_ expl-(+B_1/2)? ] (2-10)

We therefore have r = cgE/No, and it is con-

. -1 .
venient to define 4 = (TbBc) . Bc is the

channel bandwidth at the e~ points on R(f).



26

We shall call this the coherence bandwidth of
the G-F channel.
2. S-F frequency correlation function

In this case we have
R(f) = 2R°Tm s1nc(2me) (2-11)

where sinc(x) = sin(nx)/(sx).

Therefore r = N, and it is convenient

to define d = Tm/Tb. %; is the channel band-

width at the first zeros of R(f). We shall

call this the coherence bandwidth of the S-F

channel. The sinc-function frequency corre-

lation function was suggested by Sunde (6)

who showed it to be the frequency correlation

function associated with a simplified model

of a radio scatter channel.

In this work, two pulse shapes will be considered for

the signal s(t). These are the square pulse signal and the

raised cosine spectrum signal.

1. Square Pulse Signal

The square pulse signal is specified by the

equation

2E
Tb ,0<t<Tb

0 , otherwise

s(t) = (2-12)
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2, Raised Cosine Signal

The ra

s

ised cosine signal obtains its name
from the fact that the spectrum of its pulse
transfer characteristic has the shape of a

raised or "offset" cosine function, i.e.

) §Ecosz(wf/28) , |£] < B
|S(£)|° = (2-13)

0 , Otherwise
The time domain expression for this signal

is given by

s(t) = VIBE [sinc(2Bt - X)+sinc(2Bt-3/2)]
2 (2-14)

2.2 Error Probabilities for G-F Channel,
Square Pulse Signaling

For the G-F channel with square pulse signaling, exact
expressions for the six required equivalent SNR's are given
in Appendix A. In this appendix it is also shown that for

small d, say d < .1, the R's can be closely approximated by

Ry, =21

2r (1l - 4c,4d)
1+ r(4c2d2)

R

0110

2r(l - 2¢,d)

Roitnn " W+ (1 - 2c,g(r1d + 2a%(c,9(xr) -c;2g(x) 1) -(1-2¢,d)

RO]OX

= 2r(l - 8c,d + 8c,d’)
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Rii100 = Rgyp

. / 2r(l - 6¢;d + 4c,d?)
01007 (1+r){1-6c,g(r)d+2d2(3c,g(xr) ~c,?g? (r) ] }-r (1-6c, d+4c, d?)

(2-15)

where
¢, = 1/%s/x , ¢, = 1/v?, and g(r) = r/(1 + r).

All of these expressions except the one for R,,,, are in dis-
agreement with those of Bello and Nelin. The effect that
their errors have on the resulting error probability is shown
in Appendix A.

It is important to note that for each of the R's above

we have

lim lim

. PR = -1
aw0 K = 2r, giving a0 P, [2(1+1x)]

which agrees with the well known expression for DPSK signal-
ing through a flat Rayleigh fading channel.

When we examine the limits of the six conditional prob-

abilities as r - », we have
Piygg * 0

2c,a?
Poiro " 1 - T4c d + 4c,a?

1 - 2c,d + 2(c, - c,;%)d?

Pori1 -




29

Poioy * O

2
2c2d

Prioo *
1 - 4c,d + 4c,a?

- 2 2
Poroo 6, - ¢ )d
1 - 6c;d + 2(3c, - ¢,%)d? (2-16)
Thus we can write
lim , _ o i _ @ 2¢, - c.2).
ree Te = Pe 7T [;-4cld+4c2d2 vle = e
(2-17)

1 1
(l-2cld+2(c2-cl?)d2 * l-6c,d+20cz-c12)d?)]

This 1s the expression for the so-called irreducible error
probability in a selective fading system. This is because
for a given relative data rate d, the system probability of
error cannot be reduced below this value no matter how much
the signal-to-noise ratio is increased. We note that for
small d, say d<.05, we can write an asymptotic approximation
for P! as
e
P 1. 90 [2¢,+ 2(c,-c,2))=a? (5 - x3q)= 0.08542
. e T ? 2 ) ;T n *
(2-18)

which indicates that Pe1 decreases as d? as d-0.
Figure 5 is a plot of the system probability of error

for this case wherein curves are given indicating P, as a
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function of the data rate d for fixed values of r. Notice
that holding r fixed implies that the energy E per trans-
mitted bit is being held constant while the data rate is
being varied. This accounts for horizontal asymptotes on
the left which are the values of Pe for flat nonselective

fading. The line labeled r = « shows Pei.

2.3 Error Probabilities for the S-F Channel,
Square Pulse Signaling

For the S-F channel with square pulse signaling, exact
expressions for the six required equivalent SNR's are given
in Appendix B. In this appendix, it is also shown that for

small d, say d<.l, the R's can be closely approximated by

Rij = 2r

= 2r(l - 4c,d)
1+ r(4c“d2)

R

0110

2r(l - 2c,d)
(1 + r) (1 + 2c,g(r)d + 2d%[c,g(r)-c,%g%(r)]}}-r(l-2c;q)

Roi
Ry 0, = 2r(l - 8c;d + 8¢,d?)

[ ]
Riyoo0 = Ry

2r(1-6c,d+4c,d?)
(1+r) (1-6c3g(r) d+2d? [3c,g (r) ~c;29% (r) 1} ~r (1-6c d+4c @)

Rijgp =

(2-19)
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where

c, = 1/4

c, = 1/6

We again note that each of the R's above approaches 2r
as a limit when d+0, giving g8 P, = (2(1 + )17}, the flat
fading result.

Examining the limits of the six conditional probabil-

ities as r+=, we have

Py * 0
da/3
Porio * 1T - g + 2a273
5d%/24
Por1r * 1 2 a2 + 5d2/24
(2-20)
Poio1 * O
da?/3
Plioe * 177 a + 2a273
. 5d2 /48
Poroo ™ 77 733/72 + 7a7/8
Thus the irreducible probability of error is
p i @ /3,5 1 . 1
e 4" (1-a+2d2/3 48 \1-d/2+532/24 1-3d/2+7d2/8

(2-21)
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As before, for small d, say d<.05, we can write

i,.a2 (1. 10
I (5 + Zﬁ) = .13542 (2-22)

and we again see that Pel decreases as d? as d+0.
Figure 6 is a plot of the system probability of error
for this case wherein curves are given indicating Pe as a

function of d for fixed values of Pav the average power

e’
(on a one-ohm basis) dissipated at the output of the trans-
mitter. This type of curve is shown to indicate the differ-
ences in the performance curves which occur when a restric-
tion which may be physically more meaningful is imposed.
Here we consider that many communication transmitters are
designed with a fixed average transmitted power rather than
a fixed energy per transmitted bit. 1In this'curve, we see
that the asymptotes on the left are now sloping. This is
due to the fact that as the data rate is increased while
average transmitted power is held constant, the energy per
transmitted bit decreases, causing the error probability to
increase. The asymptote to the right (the line of irreduc-
ible probability of error) is the same line that would
appear in a graph of Pe with r held fixed. This is because
i

Pe is only a function of d and not of r or Pave'l It is

interesting to note from this graph that for finite average

lRecall that pl=1linp_= 1lim P

b P +®
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SNR's, the mechanism of a frequency selective fading channel
yields an error probability which is proportional to d for
small d and which is proportional to d? for large d.

In order to plot a curve of the type shown in Figure 5,

we compute the average transmitted power as follows. By

definition
Pave = E/Tb
= 2
r = 20, E/N0
. 1
Q =
TbBc
Thus
N N B
Pave = 02 = (rd) 2 j
200 Tb 20n

Now N, , Bc' and 002 are all constants associated with the
channel and are assumed to be fixed. Thus Pave is fixed if
the product rd is held constant. Therefore, in order to pre-
pare one curve 6f the type of Figure 6 from a graph like
Figure 5, the value of rd is first determined and then the
points on Figure 5 are found whose r and d correspond to the

desired value of d and fixed value of rd. The values of Pe

which are read are then plotted versus d on the new graph.
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Error Probabilities for S-F Channel,

For the
computations

noise ratios

Raised Cosine Signaling

S-F channel with raised cosine signaling, the
required to evaluate the required signal-to-

become much more formidable than for the two

cases discussed above. For this reason it is impossible to

write reasonably compact expressions for the required R's.

We will therefore write the moments of u and v, realizing

that these are used with Equation (2-8) to yield the R's.

It is convenient to make the following definitions:

It is shown in Appendix C that

mabcd -
rs

2
BROE

m??Cd z Tu]? given s = (a,b,c,d)
abecd _ .
My E |v|7 given S = (a,b,c,d) (2-24)
m??ca £ u*v given S = (a,b,c,d)
s, = 2a -1
s, = 2b - 1
(2-25)
S, = 2c -1
s, = 2d -1
i 1ol 5! 2
s.s (1- i) (1= %|n]) -
i=1 k=1 * ¥ 4221 p=m2 2 2

*K{j-2(3-i~-r), n-2(3-k-s), 24] + 32EN06rs
(2-26)
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where

K(p,q,M) = ] - > (x )

-M (2-27)
The evaluation of K(p,q,M) in terms of the sine and cosine
integrals Si(x) and Cin(x) is given in Appendix C.

In order to examine the behavior of Pei for this case,
we must resort to examination of the graphical results
obtained from numerical evaluation of the above expressions.
Figure 8, which will be discussed in detail in the next sec-
tion, contains these graphical results. It shows that for
this case, as with the previous two cases, Pei is propor-
tional to d? as d+0. From the graph, we find that the pro-
portionality factor is .047, allowing us to write

i

P, ® .04742 (2-28)

for small d.

Figure 7 is a plot of the error probabilities computed
from combining equations (2-26) and (2-27) with (2-4) - (2-8).
In this plot, values of Pe are plotted versus r for fixed
values of relative data rate d. The effect of the irreduc-
‘ible probability of error can be seen in the horizontal asymp-
toteg on the right. These asymptotes show that increasing r
indefinitely results only in reducing Pe to a non-zero value
which depends on the relative data rate. The asymptote on

the left represents the error probability for the flat
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39

/ _ael nl

7 SQUARE PULSE ; R(f1=20.° « ' /B
—~-— SQUARE PULSE } sin (277 1T)
R(f)=2R, T, 2T )m

—~—— RAISED COSINE m
108 ] | L1 1 L |
Ol 02 04 .06 .08 | 2 3 5 Ng
d.= .7d|—-—

Figure 8. Comparison of Error Probabilities - Curves of

Constant SNR.



40

Rayleigh fqding case. This is also the d=0 curve since all
our Pe expressions approach the flat Rayleigh fading expres-
sion as d+0. This flat fading asymptote shows that for low
average SNR's the error probability is controlled by the
effects of the additive noise and the variable received sig-
nal amplitude, while the distortion and intersymbol interfer-
ence effects are negligible. The horizontal asymptotes indi-
cate that even if the additive noise and variation in received
signal amplitude are removed, distortion and intersymbol

interference will still cause errors to occur.

2.5 Comparison of Results

In this section graphs are presented which compare the
results of each of the above three sections. These three com-
parisons are made in the three graphical forms which were
presented in those sections, namely

1. curves of P, versus d with average SNR held

constant,

2. curves of Pe versus d with average transmitted

power held constant, and

3. Pe versus SNR with relative data rate, d, held

constant.

Before any comparison can be made between digital com-
munication systems operating over different selective fading
channels, the guestion must be asked: "How can the relative
data rates for each system be defined in an equivalent man-

ner?" The motivation for asking this question can be seen
q

by considering the two channel models investigated above.
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For the G-F channel we defined the relative data rate, say

dl, as

d, = E-T— (2-29)
; c'b

That is, it is the ratio of the nominal signaling bandwidth
l/Tb to the coherence bandwidth of the channel. For the S-F

channel we defined the relative data rate, say d,, as
d2 = T— (2’30)

This can be interpreted as the ratio of the nominal signaling
bandwidth l/Tb to one-half the coherence bandwidth of the
channel, 2/Tm. Furthermore, it should be noted that for the
G-F channel, the coherence bandwidth Bc was defined as the
distance between e} points on the frequency correlation
function of the channel, while for the S-F channel the coher-
ence bandwidth was defined as the diétance between the .first
zeros of the frequency correlation function. This means that
d, and d, do not really represent equivalent measures of data
rate in the two different channels.

The above suggests that in order to compare digital

systems operating over frequency selective channels, one must

a. choose an equivalent definition of signaling
bandwidth for each system (l/Tb in each case

for the systems considered here),



42

b, choose an equivalent definition of coherence
bandwidth for each channel, and
C. use the same definition of relative data rate
for each system.
In this work we have defined relative data rate to be propor-
tional to the ratio of signaling bandwidth to coherence band-
width in each case. Therefore, we are left with the problem
of deciding on a meaningful definition of coherence bandwidth
and applying it to the two channels under investigation.
At least four definitions of coherence bandwidth are

possible. These are:

1. "RMS" Coherence Bandwidth

Is 1k
( J_- £°R(£) df

B'W = 2|—= (2-31)
I R(f)df

e —

This definition of coherence bandwidth was sug-
gested by Bello (25), who also suggested some
practical techniques for measuring it.

2. "Equivalent" Coherence Bandwidth
This definition is suggested by the equivalent
noise bandwidth definition which is used in

analysis of linear systems. We have

= -R—(-GTJ - R(f)df (2-32)
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3. *e”'" Coherence Bandwidth
Here we define the coherence bandwidth of the
channel as the difference between the two fre-
quencies f, and £, which satisfy R(f;) = R(f,)

« R(0)e~!. Thus

4. Reciprocal Delay Spread Coherence Bandwidth
Here we define the coherence bandwidth as the
reciprocal of the normalized rms width of the
delay spread correlation function. The rms
width of the delay spread correlation function

is given by

) ?p(r)dr
= ZJ’° (2-33)

1
° [= plt)dr

The coherence bandwidth is then defined by

5 (4) _

lH

(2-34)

-~
[ o)

2

It can be shown that T,

is proportional to the spread of the
density function associated with the second derivative of the
phase response function of the channel transfer function

H(f). This means that it is related to the average strength
of the linear delay distortion being introduced by the chan-

(4)

nel. Equating B for two different channels is the
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equivalent to equating the average strengths of the linear
delay distortion being introduced by the channels. This
method of equating the coherence bandwidths of random chan-
nels was suggested by Sunde (6, page 208;.

Unfortunately, coherence bandwidth B(l) does not exist
for the S-F channel. We can, however, use the other three
bandwidth definitions to provide a normalization between the
relative data rates of the systems we are considering.

Applying definition 2, we find for the G-F channel:l

= 1 N 2 - 2 2 =
B, ,5-07; 20,% exp(-4f°/B_%)df = B_/n/2

For the S-F channel, we obtian

(2) 1 ® . o1 -
B, = 7§;T; J 2R, T sxnc(Zme)df 7?; (2-35)
Equating these two bandwidths, we obtain
B, = —= (2-36)
fuTm
and
d, = Tm/'rb = dl//? = .565d1 (2-37)

lThroughout this section bracketed superscripts corre-
spond to the various coherence bandwidth definitions while
subscripts correspond to the specific frequency correlation
functions being investigated, e.g., B, (2) is the bandwidth

defined by definition 2 for the G-F channel correlation func-
tion.
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applying definition 3, the coherence bandwidth for the

G-F channel is

B, -5,

while for the S-F channel, we obtain

7
B B e (2-38)
c Tm
and
d, = .7dl (2-39)

Appiying definition 4, we find for the G-F channel:

g (4 = J-:z"73c°oz’ exp(- (7B 1/2)?]dr |7

J-’(/:Bcooz) exp[-(ﬂBct/Z)zldr

For the S-F channel, we obtain
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Tm \
R,t“dr -3
(4) -T 70 2 /3
B, = | m =X (T,/3) 'ﬁ;
T
_m Rgdr
-y T .
Equating these two bandwidths, we find
/6
B, = (2-40)
c nTm
and
e \
d, = —4d, = . 784, (2-41)

We note that definitions 3 and 4 result in ratios of d,
to d, which are fairly close to each other. Definition 2
gives a result somewhat different from the other two. A pos-
sible explanation for this difference is that definition 2 is
ﬁased on the area under the curve of R(f). For the S-F
channel, R(f) becomes negative for some values of f, and
these regions subtract from the total contribution to 82(2).
Thus, the different ratio of d, to d, which we find in this
case can be linked to a basic deficiency of the bandwidth
definition used. It appears that in such cases modifying
definition 2 to B{?) = ﬁT%TIw |[R(£) |af would be advisable,
but for the S~F channel, thi;ubandwidth does not exist,
Since definitions 3 and 4 resulted in nearly the same ratio
of @ to d1 while definition 2 appears to give somewhat unre-

2
liable results in this case, a ratio of d, to dx of .7 was
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chosen for.the graphical comparisons .of Figures 8, 9, and 10.
These graphs are all plotted with d, as the indicated param-
eter. .

In Figure 8 the three systems which have been investi-
gated are compared with curves of P, versus d, with average
SNR held constant. The most important fact which this graph
points out is that for a given relative data rate the irre-
ducible error probability is different for each system. We
note that raised cosine signaling in the S-F chénnel results
in the lowest Pei, with square pulse signaling in the S-F
channel and square pulse signaling in the G-F channel provid-
ing respectively poorer performance. This difference in per-
formance of the systems leads us to two conclusions. First,
it appears that for a given random channel, a bandlimited sig-
nal or a signal whose spectral energy is heavily concentrated
near the center frequency is preferable to a signal whose
spectrum has tails which fall off slowly. Second, for a given
waveform, it appears that the differences which result from
the use of channels with different frequency correlation func-
tions is relatively small. From the figure we see that the
change in performance which results from changing signals with
the S-F channel is much greater than that resulting from
changing channels with square pulse signaling. This fact is
encouraging for designers of systems similar to the one under
consideration here. It indicates that if one designs a system
using the assumption that the channel to be used possesses a

specified frequency correlation function, then even if the
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Figure 9. Comparison of Error Probabilities - Curves of
Constant Power.
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given correlation does not exactly correspond to that of the
channel, the predicted performance of the designed system
will probably not differ significantly from the actual per-
formance it realizes. For instance, if one can show that a
certain signal shape is the optimum one to use in a given
fading channel, then it could well result in nearly optimum
performance for a wide variety of channels.

Other facts which can be observed in Figure 8 are that

P b

e decreases as d? for small values of d for each of the

three systems and that for any finite average SNR, the error
probability approaches the same value for each system as d
becomes small.

In Figure 9 curves of Pe versus d with average trans-
mitted power held constant are shown for each of the systems -
investigated. 1In this graph, we again note the difference in
irreducible error probability for the three cases, as well as
the fact that this probability decreases as d? for small d.
we again see that for finite average SNR, the error probabil-
ity approaches an asymptote as d becomes small. In this case,
however, the asymptote is proportional to 4.

In Figure 10, curves of Pe versus average SNR for fixed
d are shown for each of the three cases. 1In this graph we
see that each system approaches the performance of a flat-
fading, Gaussian noise system for low average SNR. The dif-
ference in irreducible error probabilities for the three

systems can be seen in these curves also for specific values

of d.
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2.6 Summary

In this chapter we have shown that it is possibie,

although somewhat tedious, to compute error probabilities for

matched-filter communication systems employing Gaussian fading

channels by using the techniques of Bello and Nelin. These

calculations verify that:

l.

For very low data rates, the system perform-
ance approaches that of a flat Rayleigh fad-
ing system.

An irreducible error probability exists in
such systems in the sense that the error
probability cannot be reduced by increasing
the average SNR.

The irreducible error probability always

decreases as d? for small valdes of d.

Comparisons made between the three cases investigated show

that:

1.

A bandlimited or compact signal spectrum
should be preferable to one whose spectrum is
"spread out" when using a random channel com-
munication system near its irreducible error
probability.

The system's performance is not as sensitive
to the shape of the channel frequency correla-
tion function as it is to the shape of the

transmitted signal,
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The results of this chapter gives us some insight into
the nature of the performance of some random channel communi-
cation systems. In the next chapter, a technique for approx-
imating these error probabilities will be examined. With the
results of this chapter, it will be possible to make a quan-
titative comparison between the approximate and exact system
error rates. Furthermore, we will use these results in
Chapter IV to check the computer simulation program for selec-
tive fading communication systems which was developed for this
work. Finally, in Chapter V the error rates found herein will
be compared with the performance of a proposed adaptive scheme
to reduce the effects of distortion and intersymbol interfer-

ence due to frequency selective fading.
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CHAPTER II1: THE SUNDE APPROXIMATION TO ERROR PROBABILITY

3.1 Introduction

In this chapter, we review a method of approximating the
error probability of a communication system subject to fre-
quency selective fading. This method was first employed by
Sunde (6), and involves the approximation of the channel's
phase response function by a truncated Taylor's series. After
a brief explanétion of the approximation, it is applied to the
specific examples which were investigated in Chapter 1II,
namely the G-F channel with square pulse signaling, the S~-F
channel with square pulse signaling, and the S-F channel with
raised cosine signaling. For these three cases, the irreduc-
ible probability of error as computed from the Sunde approxi-
mation and the irreducible error probability as computed in
Chapter II are compared. It is shown that the Sunde expres-
sion cémpares poorly to the exact results in several respects,
and that it does not provide a good gstimate of the error

probability when the frequency selective fading is of impor-

tance.

3.2 The Sunde Approximation Method

The Sunde approximation to error probability is based on
considering the channel filter effects on a transmitted signal

as being divided into two parts - those due to the amplitude
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and phase response functions respectively. Mathematically,

these are defined by
H(f) = M(f) expl(3iG(f))
or

M(f) = |[H(f)]
(3-1)

G(f) = tan~'{Im[H(£)]/Re[H(£)])
Here M(f) is the amplitude response function and G(f) is the
phase response function associated with li(f). We note that
since H(f) is a sample function from a complex random process,
M(f) and G(f) are sample functions from real random processes.
fherefore, they have associated density functions, correlation
functions, etc. Sunde assumes that we can write Taylor's

series expansions for M(f) and G(f) as follows:

M£) =mg +mf + 53 £2 4+, .,

: g
GIf) =gy + g, f+ 57 £2 4 . . .
where
i
m, = a - M(£)
af
f=0
g. = L G(f)
1 dfl
£ =0
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Now for values of f near to zero,1 it should be permissible

to truncate these series and write

M(f) =m, + m £ (3-3)

0 1

£) = v g £+ 22 g2 (3-4)
G( ) 90 91 ‘2'1'

Here we have retained in each series the first term which can
be related to distortion introduced on the transmitted signal.
That is, we retain the term involving m; since an amplitude
response function which varies linearly with frequency will
introduce distortion in a pulse transmitted through the
system. In the phase response function the term involving g,
introduces a delay into the received pulse but does not dis-
tort the shape of the received waveform. However, the quad-
ratic function in f, the series term involving g;, does result
in distortion of the transmitted pulse, so this term is
retained in the approximation. Distortion caused by a quad-
ratic phase response function is called linear delay distor-
tion, since this corresponds to an envelope delay function
which varies linearly with frequency. We will therefore call
the Taylor's series term involving g, the linear delay dis-
tortion term.

Because H(f) has been assumed to be a sample function
from a Gaussian random process, the probability distributions
associated with the random variables m; and g; can be deter-

mined. Based on these statistics and a study of the effects

1Here the term “"near to" implies that f is small with

respect to the coherence bandwidth of the channel.
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of the values of m; and g, on raised cosine pulse distortion,
Sunde (6, page 174) concluded that the effects of linear ampli-
tude distortion (i.e., the value of m;) were negligible when
compared to the effects of linear delay distortion (the value
of g,). An experiment which will be described in Section 4.4
of this report has demonstrated the validity of this conclu-
sion, Thus, assuming the term involving g, has negligible
effect on the system, we should be able to study the behav;or
of a small-bandwidth system by studying the properties of the
linear delay distortion parameter associated with the random
channel filter. Specifically, we can attempt to find a value
of g,, say g,, with the property that for |g,|>g, pulse dis-
tortion will be so bad that some detection errors will result
even in the absence of noise. With 62 specified and with the-
distribution function of g, available, we can then associate
the channel's effects on the error rate of the system with
the function Pr[lgzl>§2]. In particular, using an argument
concerning the polarity combinations of the adjacent bits,
Sunde (6, page 179) concluded that the error probability is %
when |g,|>§,. Thus, the approximation to the system proba-

bility of error in the absence of noise is
p = priqg,l>q, (3-5)
e '} 92129,3 -

In order to take into acocunt the effect of additive noise in
the system, Sunde assumed that for small error probabilities

(that is, small Pe1 and high average SNR), one can write
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. £ i
Pe(r,d) = Pe (r) + Pe (d). (3-6)

where Pef is the flat-fading error probability which is
dependent only on the average signal-to-additive-noise ratio
r. Pei, being the irreducible error probability, is only a
function of the reiative data rate d. It can be seen that
this experession does possess two properties which we know

that all such expressions must have. These are

lim i
1. Low Pe Pe (d) and
lim _ f

Sunde (6, page 164) found that for small probabilities,

the required probability function of g, is given byl

2!12

Prllg,|>9,] = (1+1n(1+4g,/27%1,?)) (3-7)

9,

where 1, is the rms delay spread defined by Equation (2-33).
This approximation is valid for values of 62 which are greater
than 100t%r ? , that is, when the probability is below .03.

It should be noted that as the signaling bandwidth
changes in the transmission system, the value of éz changes
propertionally. This is associated with the fact that g, is

the coefficient of the term in (3-2) which produces a delay

l1dentify t,%/4 with b,/b, in Sunde's Equation (45).
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function which varies linearly with frequency. Because of
this, if a filter has a constant value of g, and the band-
width of the signal passing through the filter is doubled,
then the delay undergone by signal spectrum components at
the edge of the signaling band will be doubled. It can be
shown that this changing of the delay undergone at each point
of the signal spectrum, changes the shape of the received
pulse. Thus éz varies with changes in the signaling band-
width. However, g, can be related to a normalized parameter
which has the advantage that the pulse shape remains invar-
iant as the signal bandwidth is changed. This parameter, L,

is defined by
L = D/'I‘b (3-8)

where D is the filter delay at the edge of the signal trans-
mission band and Tb is the baud length associated with the

signaling pulse. g, can be related to L as follows:

g, = 27T L d (3-9)

The probability distribution function associated with L can
be easily determined from that of g by the use of this equa-

tion. Thus for ﬁ>50w102/Tb2, we have

2 ~

Pr(|L|>L] = {1+1n (l+ ) ] (3-10)
ﬁsz nroz
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In order to write the approximate error probability func-
tion in terms of the relative data rate, the value of r02
must be evaluated for each of the channel models being inves-
tigated. From the work of section 2.5, it can be seen that

for the G-F channel

while for the S-F channel

2=i‘2
! 3

0 'lm

Substituting-these values of 102 into (3-10) and recalling

_ 1 . .
that d, = TSE; and d, Tm/Tb, the complete approximate error

probability can now be written as

8d ?

1l 1l 1 »L
Pe(r,dl) 2 T+ 1) + vy — {1 + In(1 + 2)] (3-11)
‘L 8dl
for the G-F channel, and
4d, 2 -
- 1 1l 2 3L
Pe(r,dz) T+ o) +* T {1 + In(1 + 2)] (3-12)
3L 4nd,

for the S-F channel. 1In the following section, the choice of
a value of L is discussed and Equations (3-11) and (3-12) are

compared with the exact expressions of Chapter II.
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3.3 The Sunde Error Probability Approximation for DPSK

In order to determine precisely the value of L required
for Equations (3-11) and (3-12), and also to investigate the
validity of some of the assumptions made in the development
of the Sunde approximation, a computer simulation program of
an ideaiized communication system was developéd. The system
simulated is identical to the one we have been concerned with
in this work (see Figure 3) except that the channel filter is
replaced by a time-invariant filter which exhibits only lin-
ear delay distortion. That is, the channel transfer function

is given by

H(f) = exp(jg,£%/2)

= exp(ijszfz)

where L is the normalized linear delay distortion parameter
defined above. We still allow additive white Gaussian noise
to remain, so there are now two constants which completely
specify the channel ~ the normalized linear delay distortion
parameter L and the additive noise spectral density N,. The
digital computer program was used to determine the system
probability of error as a function of the two system parame-
ters L and r, the average SNR. The program was written to
take into account any intersymbol interference contributed
from pulses up to two bauds removed from the pulses being
detected [i.e., all possible combinations of the six-element
b b

modulation sequence S' = (b_,, b-x' bo' Lo by b3) were
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considered]. Details of the computer program are given in
Appendix D.

The results of the computer calculations are shown in
Figuresll, 12, and 13. Figures 1l and 12 show results for the
raised cosine spectrum, while Figure 13 is for the square
pulse signaling case. The same results are shown in both
Figures 11 and 12, but they are plotted in different forms.
In Figure 1ll, curves are given for error probability versus
SNR with the normalized linear delay distortion parameter L
being held constant. Figure 12 shows the error probability
for the same system, but plotted versus L for fixed values of
the average SNR. Figure 13 shows the results for the square
pulse signal plotted in the same manner as Figure 12.

Several interesting facts can be seen from these graphs.
In Figure 11, the curve labeled L = 0 is the well-known expo-
nential curve of error probability for a DPSK system in addi-
tive white noise (no fading). To the right of this are curves
indicating the degradation resulting from addition of various
amounts of linear delay distortion. For example, we can
determine the penalty in increased SNR required to maintain a
given error probability by drawing a horizontal line corre-
sponding to the desired Pe on this graph. The intersections
of this line with the curves shown will indicate the SNR's
required to maintain the desired p, for various amounts of
linear delay distortion. These curves show that degradation
due to linear delay distortion does not occur uniformly.

Almost no degradation occurs from L = 0 to L = 1, while over
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10db of SNR ‘degradation occurs from L = 2 to L = 3 for most
practical error rateé. We also see that infinite degradation
occurs for error rates below .03 when L is increased from 3
to 3.4. This shows that pulse distortion is 80 severe at L =
3.4 that an irreducible error probability results. The curve
of L = 3,4 also points out the interesting fact that for some
severely distorted pulses, the error probability is actually
lower for certain finite SNR's than it is at r = », The rea-
son for this can be seen by realizing that if an irreducible
error probability exists, then some pulse combinations will
cause the detector sampler to sample a voltage of the wrong
polarity even when no noise is present. When moderate amounts
of noise are inserted into the system. in such a case, the
probability of the sampled voltage crossing over to the cor-
rect polarity increases. Thus the conditional error probabil-
ity can be smaller for some finite SNR's than it is for r = =,
In Figures 12 and 13, we note a very important property
of our linear delay distortion system. This is the fact that
there is a much higher rate of degradation for high SNR‘s than
for low SNR's. For example, for an SNR of 30 db, the error
probability rises from about 3 - 10"° to above 0.1 for an
increase of L from 3 to 3.8, while at an SNR of 10 db, an
equivalent rise in error probability occurs fromL = 0 to L =
3.2. The extreme of this behavior is evident for the infinite
SNR case, where an almost "instantaneous” jump from zero error

probability to P, = .1875 occurs at about L = 4.
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It should be pointed out that although the graphical
results of Figures 1l1-13 are being used here as part of a
study of the Sunde approximation, they may well have important
practical applicétions in themselves. For instance, the
designer of a communication system employing a time-invariant
channel (such as a telephone line or transmission cable)
whose response function can be approximated by that of a pure
linear delay distortion filter could use these graphs to esti-
mate the error probability for his system as a function of
data rate and average SNR. Such information could, for exam-
ple, be of use in specifying the accuracy to which delay dis-
tortion equalizers must be adjusted in such systems to guar-
antee desired levels of performance. Also, these graphical
results can be extended to other signals and other channel

filters with only minor modifications to the computer program

used for these results (see Appendix D).

From the above results we can immediately note two facts
relative to the assumptions involved in the development of the
Sunde apéroximation. First, we see that the assumption that
an L exists for which |L|>L results in a very high error prob-
ability and for which |L|<L results in an extremely low prob-
ability is indeed valid. For both the raised cosine and
square pulse signaling cases, we see that Pei = .1875 for L>4
while Pei = 0 for L<3.4. Thus it appears that we can reason-
ably set L = 4 for both signals. Second, we see that Sunde's

i

assumption that Pe = ,25 given |L|>i is somewhat inaccurate,

As mentidned above, we find a value of Pe1 = ,1875 for |L|>L.
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For simplicity in calculation, and to take into account a pos~
sible increase in Pei due to inclusion of intersymbol inter-
ference beyond two bauds away from the detection interval, we
will assign a value of P_' = .2 for |L|>L.

Substituting the value L = 4 and changing the conditional

value of pel from .25 to .2 in Equations (3-11) and (3-12),

we obtain
1 .4d,? .
1
for the G-F channel, and
1 d,’ 3
Pe(r,dz) = m + Iz— {1 + 1In(1l + g 2)] (3-14)
2

for the S-F channel. Since L was found to be 4 for both the
square pulse and raiséd cosine signals, these expressions
apply to both cases.

Figure 14 shows a comparison of the exact and approximate
irreducible error probabilities which we have found. Three
curves of exact Péi are shown for the three cases investigated
in Chapter 11. Two curves are shown for the approximate irre-
ducible error probabilities - the second terms of (3-13) and
(3-14) . The normalization d, = .7d, between the data rates
for the two different channel models has been used in this
graph, as was done for the graphs of Section 2.5.

Three important facts can be noted from these plots.

First, the Sunde approximation gives higher error probabilities
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than the exact results. Approximately one-half to one order
of magnitude difference exists between the exact results and
the approximation for the ranges of d considered. Second,
the approximation fails to provide indication of the relative
difference in error probability which was found for the two
signals investigated. That is, the approximation provides no
indication of the relative difference in performance between
square pulse and raised cosine signaling which was found in
Chapter II,

Third, it can be seen on the left side of the graph that
the limiting behavior of the exact and approximate probabili-
ties is not the same as d+0. As was shown in Chapter II, the
exact irreducible error rate expressions are all of the form

Pel(d) = Kd? for small d. Expressing this another way,

1
lim Pe (d)

0 —5— =K (3-15)
d-+0 g2

where K is a constant satisfying 0<K<«= which depends on the
specific channel-signal combination under consideration. For
the approximate irreducible error rate, which we will write as

Pei’ it can be shown that

p i
1im Fe (d) ' 0 1q<2

d~0 ad = - ,q2 (3-16)

This means that if the relative error between the approxima-

tion and the exact results is defined as
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p La) - B i(d)! p i) |
E(d) = L& € L= |2 - &
Pel(d) Pel(d)

(3-17)

then this error becomes infinite as d+0 for all the cases

investigated.

3.4 Summary and Comments

The Sunde error rate approximation has been shown to
possess the basic properties which we would expect of such an
expression. Specifically, for small d the approximate expres-
sion approaches the constant flat fading probability while an
irreducible error probability is accounted for as the rela-
tive data rate increases. The results of this chapter also
show that for error rates of practical interest, the Sunde
expression for the irreducible error probability is within an
order of magnitude of the exact value. However, it was found
that the approximation does not reflect the difference in per-
formance which was noted for different signaling pulse shapes.
Also, it was found that the relative error between the Sunde
approximation and the exact results will become infinite as
d+0 for all cases investigated.

The fact that the Sunde approximation for irreducible
error probabiiity does not possess the same limiting form for
very small signaling bandwidths as do the exact results is a
particularly disturbing result. This is because much of the
development of the approximation was based on the use of a

truncated Taylor's series expression for the phase response
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function, the justification for this being that such an approx-
imation becomes increasingly better as the bandwidth of inter-
est becomes smaller. In spite of this, we find that the

error probability based on this expression becomes a worse
approximation to the exact probability as the bandwidth dimin-
ishes. The answer to this apparent dilemma lies in the fact
that the phase response function, G(f), of the random channel
filter, whenvconsidered as a sample function from a random
process, cannot be represented in a mean square sense by a
Taylor's series expansion. We are led to this conclusion from
the fact that the random variable g, of Equation (3-2) does
not possess a finite variance.l This implies that the auto-
correlation function of g, cannot be analytic, and from this
it follows that a mean square convergent Taylor's series for
G(f) does not exist (26). Furthermore, the lack of a finite
variance for g, means that a random process, g,(f), which we
call the second derivative of G(f) does not exist. Therefore
there is no assurance that Equétion (3-4) will become a good

approximation to G(f) even for very small bandwidths. This

1This follows from noting that for g)- 0, the probability
density function of g, (which is symmetric) is given by

plg)) = - % a%{ Prilg,|>9]].

After inserting (3-7) into this expression, it is found that
plg,) does not decrease as fast as (g;)~? for g;+=, and thus

922 does not exist.




73

lack of an.adequate representation for the phase response
function is probably the major cause for the discrepancies
between the exact results we have found and the approxima-
tions.

It should also be noted that the assumptions required to
develop the Sunde approximation differ somewhat from the
assumptions which we have made for the system under investiga-
tion in this work. This refers to Sunde's assumption that the
pure delay term in Equation (3-4) will have no effect on the
performance of the receiving system. The delay term in
Equation (3-4) is the small change in delay which occurs due
to the random fluctuations in the channel filter. 1In a phys-
ical communication System, it represents the small random
delay which the fluctuations in the medium superimpose on the
constant propagation delay of the channel. 1In the system
which we have analyzed, it was assumed that the constant aver-
age propagation delay was known and that the detector system
employs a sampler which has been adjusted to take this delay
into account. However, any additional random delays intro-
duced by the channel filter in our model (see Figure 3) are
not known and are therefore not taken into account in the
detector design. This means that the additional random
delays can possibly degrade the system performance.

In Sunde's model; the analyses of the signal distortion
properties (such as those resulting in Fiqures 11, 12, and 13

of this chapter) have assumed ideal sampling of the received
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signal at all times. This means that no degradation due to
deiay is assumed to take place.

It can be seen that this assumption correctly models
only those communication systems in which a scheme has been
implemented for adaptively changing the detector syncroniza-
tion in order to counteract the random delay changes. There
are some systems in existence in which such schemes have been
implemented, e.g., systems with "syncronizers" to extract tim-
ing information from the low-pass data signal itself. 1In
other systems, e.g., systems where timing information is
obtained from a separate channel of an FDM system or where the
integration time in the receiver syncronization system is very
long compared to the channel's "coherence time," the assump-
tion of perfect bit syncronization may not be valid. Because
of this, we might feel that the Sunde error rate approxima-
tion would be better suited to systems with perfect adaptive
syncronization. This appears dispelled by the fact that in
Figure 14 the approximation gives consistently high approxi-
mations to the error probability especially for small d. We
intuitively feel that a system with perfect adaptive syncron-~
ization should perform no worse than the same system without
such a feature at all SNR's, Thus it appears that the Sunde
approximation would not be valid for this case either. We
therefore conclude in this case also that the inability of
the channel phase response function to be adequately repre«
sented on the basis of point measurements (the derivatives)

has made the Sunde approximation invalid. Thus, on the basie®
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of the results of this chapter, we are forced to conclude
that at least for the DPSK case, the Sunde error rate approx~
imation does not provide a good estimate of the error prob-

ability when the frequency selective fading is of importance.
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CHAPTER IV: EXPERIMENTAL RESULTS FOR NONADAPTIVE

SELECTIVE FADING SYSTEMS

4.1 Introduction

In Chapter V we will investigate the performance of a
receiver which attempts to adaptively correct for the effects
of phase distortion caused by a selectively fading communica-
tion channel. Since the mathematical analysis of this system
is intractable, its performance was investigated by digital
computer simulation. 1In order to check the operation of the
simulation program which was developed for this purpose, some
computer simulations of the system which was analyzed in
Chapter II were carried out. 1In addition, several experiments
which investigated the relative effects of phase and amplitude
distortion in such a system were performed. 1In each of these
cases the receiver structure considered was that shown in
Figure 3 of Chapter II. This receiver consists of a matched
filter, multiplier, low-pass filter, and threshold detector.
In contrast to the "adaptive" receiver of Chapter V which
attempts to change its character in accordance with measure-
ments made on the channel, we will refer to the receiver of
Chapter II as the "nonadaptive" DPSK receiver.

In this chapter we begin with a general discussion of the

computer simulation programs which were developed for this
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research. Next the results of the simulation of the non-

adaptive selective fading system are shown and compared with.
the theoretical results of Chapter II. Finally, the experi-
mental results on the relative effects of amplitude and phase

distortion are given.

4.2 The Computer Simulation Programs

The purpose of the computer simulation programs used for
this research was to evaluate the error probability for cer-
tain special receiver systems used in conjunction with a
Gaussian frequency selective fading channel. Although the
program design was general in nature, all the results shown
in this report are for the case of DPSK signaling and an S-F
channel model. The method employed to obtain these error
probabilities consisted of using a subprogram which computed
the average error probability for a given channel transfer
function and then using this program in a Monte Carlo scheme
which generated a sequence of pseudo-random channel transfer
functions and evaluated the average performance over the
entire set of channels. Thus, for each given channel, the
subprogram computed a conditional probability of error by
effectively averaging over the randomness of the additive
noise and over the possible message sequence combinations.
This subprogram was then used as a part of the main program
which averaged over the ensemble of random channels. Details
of the operation of this subprogram are presented in Appendix

D. From the standpoint of the main program, the operation
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required was that of determing the sample means of an infinite
population of random variables. The selection of the partic- (
ular random variable is controlled by the pseudo-random chan-
nel generated, and the resulting value of Pe is then one of
the independent random variables selected from the population.
The independence of the random variable Pe from one selection
(experiment) to the next is insured by the fact that each new
channel sample generated is effectively independent of all
the other channel samples. |

From the above discussion it is obvious that the proce-
dure required to arrive at an estimate of the system proba-

bility of error is to compute the sample mean of the various

conditional error probabilities as they are determined in the
computer. Thus, writing the sequence of conditional error f
probabilities as P, n= 1,2 ...N, we have as our estimate of

the system error probability
- 1
P, =5 P (4-1)

where N is the number of conditional error probabilities gen-
erated, i.e., the number of random channel samples investi-
gated. In order to obtain an idea of the accuracy of the
error probability estimate computed in these programs, an
estimate of the standard deviation of ﬁe was also computed for

each estimate.
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4.3 Comparison of Theoretical Results and
Experimental Computer Results

In this section the results of twc computer simulation
experiments are described. These experiments both involve
simulation of communication systems for which theoretical
analysis is available, enabling the results of these experi-
ments to be compared with the theoretical predictions.

The first experiment performed was the simulation of the
nonadaptive communication system of Figure 3 for the S~-F
channelvwith raised cosine signaling. Thus the analysis of
Chapter 11 is applicable to predict the error rate performance
of the system. The experiment was performed for two different
relative data rates - .56 and .28, For d = .56, 500 channel
samples were used for the experiment while 1,500 samples were
used for the d = .28 case. Figure 15 shows the theoretical
predictions and experimental results for both cases. Inter-
vals extending one estimated standard deviation above and
below the error probability estimate are shown in this graph
for each experimental point. For the d = .56 case, the esti-
mated standard deviation of the error probability estimate
ranged from 4.27% of the probability estimate at the 7db point
to 11.7% at infinite SNR. The error of the estimate relative
to the theoretical predictions was about 1.5% at the 7db point,
6.45% at infinite SNR point, and reached a maximum of 8.6% at
the 20db point., For the d = .28 case, the ratio of the ésti-
mated standard deviation to the error probability estimate was

3.48% at r = 7db and 21.8% for infinite SNR. The error of the
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estimate relative to the theoretical prediction was 3.6% at
r = 7db, 3.48% for infinite SNR, and reached a maximum of
10.3% at r = 14.7db.

These results clearly point out the fact that as the
error probability being estimated decreases, much longer
experiments are required to obtain good experimental results.
In the two cases investigated here, the relative error of the
experimental results compared to the theoretical predictions
was roughly the same. The estimated standard deviation
expressed as a fraction of the error probability estimate was
almost twice as large for the d - .56 case as for the d = .28
case., However, to achieve even these results, three times as
many channel samples were required for the d = .56 case as
for the-d = .28 case.

The standard deviation limits shown about the probability
estimates on this graph can also be interpreted as confidence
intervals associated with the estimates. As discussed by
Cochran (27), it can be assumed that the ensemble of proba-
'bility estimates possesses a normal distribution. Thus, from
normal probability tables, we can determine that the inter-
vals drawn about the estimate points can be considered to be
68% confidence intervals., Similarly, if one were to extend
the indicated intervals by 50% in each direction, 87% confi-
dence intervals would result, while 95% confidence intervals
correspohd to intervals extending two standard deviations in
each direction. These comments also apply to all the other

plots of experimental points which are given in this report.
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The second experiment to be described in this section is
a simulation of a communication system subject to nonselec-
tive flat Rayleigh fading. Since this system has been ana-
lyzed mathematically, it is again possible to compare the
experimental error probabilities from the computer simulation
with theoretically predicted ones. These results are pre-
sented here because they will be used in the next section for
comparison with experimentally determined error rates for two
other systéms. This system was simulated on the computer by
simply replacing the pseudo-random, frequency-dependent chan-
nel transfer functions generated by the computer with a con-
stant transfer function whose value was equal to the value of
the original transfer function at the center frequency. Writ-
ing H (f) for the new transfer function and H(f) for the orig-
inally generated transfer function, the simulation»simply

implemented the equation

H (f) = l(o) for | £]<B. (4-2)

As shown in Chapter 1I, this system can be considered to be
the limit of our general frequency selective system for the
special case of very small signaling bandwidths.

Figure 16 shows a comparison of the experimental and
éheoretical results for this experiment. The experimental
points were all obtained by using 1,000 pseudo-random channel

samples in the simulation program. As before the experimental

points are plotted with bars indicating the + 1 standard
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deviation interval about the probability estimate. These
estimated standard deviations range from 4.6% of the error
probability estimate at the 7db point to 27.6% at the 20db
point to 72.1% at the 30db point. The actual experimental
error relative to the theoretical error probabilities ranges
from a minimum of .084% at the 7db point to a maximum of 36%
at the 40db point. This experiment again points out the dif-
ficulty of accurately estimating error probabilities of the
order of 10~ and below as compared to estimating those near
10”2 and above. However, we do find that the experimental
points virtually always remain within one estimated standard
deviation of the theoretical value. In both of the experi-
ments described above, the experimentally measured error prob-
abilities and the theoretically predicted ones generally
agree quite well. From this we conclude that the computer
simulation model has closely approximated the mathematical
model used in Chapter II. As mentioned above, these experi-~
ments provide a relative accuracy in the error probability
estimate which is much better at high average probabilities
than it is at low ones.

4.4 The Separate Effects of Amplitude
and Phase Selective Fading

In this section, an experiment is described which was
designed to indicate the relative severity of amplitude and
phase distortion in the Gaussian frequency selective fading
channe1§ which we have studied. One motive for carrying out

this experiment is to determine the accuracy of Sunde's
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for all f in the bandwidth of interest. Thus the channel
transfer function used in the experiment possesses all the
variations in magnitude that H(f) does, but it is a pure real
function. To determine the effect of phase distortion alone,
the original channel transfer function is ieplaced by a trans-
fer function with constant magnitude and phase response func-
tion equal to that of the original transfer function. The
magnitude of the modified transfer function was set equal to
the value of the magnitude of the original transfer function

at the center frequency. Mathematically, we can express this

operation as

H (f) = [H(0) | [H(£)/|H(£)]] (4-4)

Figure 17 shows the result of the first set of experiments.
This figure plots probability of error versus SNR for a fixed
value of relative data rate d. For this experiment 4 was
0.28. Five sets of points are plotted on this graph. These

are:

1. Theoretical Flat Fading

2. Theoretical Selective Fading - d = .28

3. Experimental - Amplitude Distortion Only

4. Experimental - Phase Distortion Only

5. Experimental - Flat Fading
The three sets of experimental points all were obtained by
‘performing the respective experiments using the same set of

1,000 pseudo-random channel samples. The use of identical
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conjecture that phase distortion is the dominating factor in
determining the error probability in such systems. Further,.
we would like to deepen our understanding of the Gaussian
channel by obtaining quantitative data on the relative sever-
ity of the two types of distortion. If Sunde's conjecture is
true, we wish to know to what extent it is true and how the
system parameters such as relative data rate and SNR effect
this. In the results to follow, it will be shown that the
Sunde conjecture is indeed true for ranges of r and d where
intersymbol interference and distortion effects outweigh the
effects of additive noise. This result will lead, in Chapter
V, to the formulation of a simple adaptive scheme which is
capable of providing significant improvement in the operation
of digital systems over Gaussian fading channels.

In order to compare the relative effects of amplitude
and phase distortion, two experiments were performed. Each
experiment consisted of using the computer simulation scheme
described previously with one modification. This modifica-
tion consisted of changing the pseudo-random channel sample
before it was used in the signal processing portion of the
program, To determine the effect of amplitude distortion
above, the complex-valued transfer function was simply
replaced by its magnitude at each frequency. Writing Hm(f)
for the transfer function after modification, the program

implemented

Hy (f) = |[H(£) | (4-3)
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sets of channel samples, allows us to make meaningful compar-
isons between the results obtained for each experiment.

The first and most important fact that this graph shows
is that the error rates due to phase distortion are signifi-
cantly greater than those for amplitude distortion at all
SNR's. 1Indeed, the results of this simulation indicate that
an irreducible erfor rate due to phase distortion exists
while no indication of an irreducible error rate dué to ampli-
tude selective fading waé found. For the entire set of 1,000
channel samples ekamined the error probability at infinite
signal-to-noise ratio was zero for the amplitude distortion
case. It is thus apparenf that if an irreducible error rate
due to amplitude-selective fading exists this error rate must
be several orders of magnitude below that due to phase dis-
tortion.

A second fact of great importance which can be seen from
this graph is that the error rates due to amplitude selective
fading are actually lower than those for the identical system
subject to flat fading only. In order to show this, both the
theoretical flat fading error probability and the experimen-
tally determined rate are shown in the figure. This result
is somewhat startling since it indicates that the average
error rate for a system which introduces frequency selective
amplitude distortion is lower than for such a system with no
distortion introduced at all. After a careful investigation
of many individual channels which were used in this experi-

ment, it was determined that the reason for this phenomenon
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is that in many cases where deep fading occurs at one fre-
guency in the transmission band other frequencies in the

band are not undergoing such severe fading. This means that
the total energy available for detection is greater than if
the channel were undergoing a deep flat fade across the
entire band, as in the case of flat fading. Thus another way
of looking at ﬁhis phenomenon is that we are taking advantage
of a diversity effect in the channel., Multi-channel diversity
communication systems rely on the fact that the probability
of a deep fade occurring simultaneously in several fading
channels is much lower than the probability of a deep fade in
one channel. Similarly, our results show that when the phase
distortion in the Gaussian frequency selective channel is
removed, we can take advantage of the same effect in a single
transmission band.

It is interesting to note that the experimental points
for the pure émplitude distortion case all fall on a straight
line for SNR's greater than l0db. The relationship between
error probability and SNR corresponding to this line was

found to be

a -1.463 (4-5)

Pe = ,946r

. a
where we have written Pe

for the probability of error due to
amplitude distortion. This can be compared to the asymptotic

flat fading result for large r which is

- -1 (4-6)
Pe .5r .
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The smaller exponent for the pure amplitude distortion case
indicates the fact that the error probability is falling fas~
ter as a function of r for this case than for the flat fading
case,

In Figure 17 the theoretical error probability for ﬁhe
frequency selective Gaussian fading channel (both amplitude
and phase distortion) is also plotted. Comparing this curve
with the experimental points for the pure phase distortion
channel shows us that the irreducible error rate due to phase
distortion only is actually higher than the irreducible error
probability due to combined phase and amplitude distortion.
1t appears from this that the diversity effect associated with
amplitude selective fading which was mentioned above has the
effect of reducing the irreducible error rate due to phase
distortion when the two effects are combined.

Figure.la is a plot of experimental and theoretical data
plotted in an identical manner as that of Figure 17. 1In this
case all the results are for a lower relative data rate - d =
0.14. This graph confirms that for 4 = 0.14 the nature of our
results is identical to the case shown in Figure 17 where the
relative data rate was 0.28. We see again that the error
rates due to pure phase distortion are higher than those due
to amplitude distortion alone for all SNR's. Further, while
an irreducible error probability definitely exists for the
phase distortion case, no irreducible error rate was experi-
mentally found for the pure amplitude distortion case. We

also note that again the error rate due to amplitude
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distortion alone is lower than the flat fading error rate,
indicating that the diversity effect is again present.
Finally we note that the irreducible error rate due to phase
distortion alone is again greater than that for combined ampli-
tude and phase distortion.

We again note that the experimental points for the pure
amplitude distortion case fall very nearly on a straight line
for SNR's above 10db. In this case the equation of error prob-

ability to SNR was determined to be

1.3

a - .794r" (d = .14) (4-7)

p
e

This can be compared with the result from Figure 17,

P2 = 946 1463 (d = .28) (4-8)

and with the flat fading result

-1 ,
P, = .5r (4-9)

The different exponents in the two amplitude distortion
expressions support a fact which we know must be true about
the pure amplitude distortion results for our system. This

is that for small relative data rates, the pure amplitude fad-
ing error rates must approach the flat fading error rates.
This can be seen by first recalling that the reason for the
particular behavior we have found for the pure amplitude dis-
tortion system was that the transmission band was wide enough

so that a deep fade at one frequency in the band would not
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necessarily indicate a deep fade throughout the entire band.
In other words, the signaling bandwidth is wide enough
compared to the width of the channel's frequency correlation
function that a significant difference in the amplitude of
the channel's transmittance can occur within the signaling
bandwidth. From this viewpoint, it is obvious that as the
signal bandwidth gets smaller, the probability of a signifi-
cant change in the channel transfer function's amplitude
within the signaling bandwidth becomes smaller. 1In the
limit, we approach the case of a flat transfer function whoée
amplitude must, of course, possess a Rayleigh distribution.
Thus we see that for small relative data rates the pure
amplitude distortion error rates must approach the Rayleigh
flat fading error rates. The fact that the exponent in the
expressions for the pure amplitude distortion error rates
seem to approach -1 as d becomes smaller shows that the
results are in accordance with the predicted behavior.

In order to show graphically that the experimental ampli-
tude distortion results are in accordance with the predicted
limiting behavior described above, Figure 19 has been pre-

pared which contains the following error probability plots:

1. Theoretical Flat Fading

2. Experimental Flat Fading

3. Experimental Pure Amplitude Distortion - d = ,280
4. Experimental Pure Amplitude Distortion - d = ,140

5. Experimental Pure Amplitude Distortion - d = .0933
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Each of the experimental curves was obtained by using an
identical set of 1,000 channel samples. For clarity, the
estimated standard deviation limits have not been included in
this graph. The results shown in this graph indicate clearly
that for each value of r considered, the error rate approaches
the flat fading case as d becomes smaller. From these
results, we conclude that our experimental results do agree
with the predicted limiting behavior for the pure amplitude

distortion case.

4.5 Summary

In this chapter the results of several computer simula-
tions of systems containing the nonadaptive DPSK receiver are
given. First, the frequency selective fading system examined
in Chapter II was considered. It was shown that the simula-
tion results for this system are in good agreement with the
theoretical predictions, from which it is concluded that the
computer simulation accurately models the communication
system of interest. As expected, it was also found that the
accuracy obtainable with a simulation experiment of any given
length becomes poorer as the error probability being esti-
mated decreases. Next, the results of the simulation of a
pure flat Rayleigh fading system were shown. As in the first
experiment, the experimental and theoretical rates were in
agreement. Finally, communication systems subject only to
the phase distortion or amp}itude distortion components of

the Gaussian fading channel were simulated. The results of
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these experiments revealed that in the presence of phase dis-
tortion alone the system performs worse than in the presence
of amplitude and phase distortion combined; while in the
presence of amplitude distortion alone, it performs better
than the same system in the presence of flat fading. Thus,
Sunde's conjecture that phase distortion is responsible for
virtually all of the degradation which occurs in the fre-
quency selective fading channel was found to be true. It was
found that the improvement which the amplitude distortion
case affords over flat fading can be interpreted as being due

to a diversity effect.
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CHAPTER V: EXPERIMENTAL RESULTS FOR ADAPTIVE

SELECTIVE FADING SYSTEMS

5.1 1Introduction

The experimental results of the previous chapter have
shown that phase distortion can be considered to be the basic
influence in causing errors due to intersymbol interference"
and pulse shape distortion in selective fading communication
systems. This fact is important because it indicates that if
one is operating a system whose probability of error is con-
trolled by distortion effects (i.e., the effect of Pei), then
he may be able to significantly reduce the system error rate
with the use of some form of phase distortion equalization.
Of course, for a random fading channel, this implies an adap-
tively time-varying equalization scheme. In general such a
scheme would involve a system for measurement at the receiver
to determine the distortion characteristics, a feedback
scheme to transmit the measurement data to the signal gener-
ator, and an adaptive control on the signal generator which
would change the signal's shape so as to optimally combat the
channel effects. however, in the present case the fact that
phase distortion is the primary cause of the signal distor-
tion is extremely important in that it allows elimination of

the requirement for a feedback system. This is because phase
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correction is ideally performed with a network which pos-
sesses a constant amplitude response function and phase
responge function designed to compensate for the given chan-
nel phase characteristic. Such a network, when placed
between the channel output and the matched filter input does
not change the additive noise spectral density. Because of
this, the system'’s performance is the same whether this fil-
ter is placed at the transmitter output or at the detector
input., Thus, since measurement and correction can both take
place at the receiver, no feedback channel is necessary.

It should be pointed out that some of the results of
Chapter 1V are of direct interest in relation to the perform-
ance of an adaptive system such as is described above. This
is because, in the light of the above discussion, we can
interpret the results of the experiment with only amplitude-
selective fading as an indication of the ultimate performance
which could be achieved by a phase-correcting adaptive system.
That is, if an adaptive system could be constructed to measure
the phase distortion of a channel and perfectly correct for
such phase distortion, the resulting performance would be
simply that of the amplitude-selective system shown in
Chapter IV. This shows us that for systems which are subject
to the effects of a Gaussian fading channel, significant
reductions in error rate may be possible if an adaptive
receiver system is implemented which attempts to measure the
channel phase characteristic and to compensate for it. We

naturally realize that such a system could not achieve the
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performance levels of the pure amplitude—sélective fading
system since neither the measurement nor the compensation
could be perfect, but this does not preclude the possibility
of significant error probability reductions for such a system,

We thus conclude that it is of interest to attempt to
formulate an adaptive system for phase measurement and cor-
rection and to attempt to evaluate its performance. In this
chapter two such systems are investigated - one designed to
compensate for the residual delay introduced by the channel
and the other designed to combat residual delay and linear
delay distortion. 1In each case, measurements are assumed to
be made with pilot tone measurement systems which consist of
two pilot tone generators at the transmitter and two corre-
sponding pilot tone receivers at the receiver. In addition,
the effects of additive ncise in the pilot tone measurement
system and of using a physically realizable equalization fil-
ter in the adaptive system are investigated.

5.2 Measurement and Representation of
Channel Phase Distortion

In considering an approximate representation for the
phase response function of a random channel, the work of
Sunde provides an intuitively attractive approach. That is,
we feel that for bandwidths which are reasonably small with
respect to the channel's coherence bandwidth, we should be
able to approximate the phase response function by some com-
bination of pure phase shift, pure delay, and pure delay dis-

tortion (i.e., by some quadratic expression in f). Of course,
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the results of Chapter III show us that intuition must be
combined with good mathematical understanding in this situa-~
tion, since we have seen that the use of a Taylor's series
approximation is invalid in this case.

In essence, the reason that the Taylor's series repre-
sentation fails to adequately represent the phase response
function of the Gaussian fading channel is that in this case
measurements made at a point fail to represent the true
nature of the phase response function over an interval - the
transmission band. Thus, it is obvious that a method of
representation should be sought which takes into account the
properties of the phase response function over an interval.
This representation over an interval can be accomplished
while retaining the delay and linear delay distortion approx-
imation features described above by using a polynomial fit
approach to the representation. Specifically, if the phase
response function is G(f) and the bandwidth is 24af, then let-

tingl
G, = G(0)

G, = G(aAf)

G, = G(-Af) ,

we can approximate G(f) by

G(f) = Af? + Bf + C (5-1)

llt is assumed that G(f) is represented as a continuous
function of f and is not expressed in modulo 2n» form.
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where

Ul v ~=
A= 2 : (5-2)
2(af) 2
G -G
B = ——-———------l 2 (5"3)
2Af
c =g, (5-4)

We note that this polynomial fit representation insures that
the error in representation of the phase response function
will be zero at the three points 0, af, and -aAf. Thus, we
have reason to believe that this representation may provide
an adequate interval representation for the phase response
function even though the first three terms of the Taylor's
series may fail to do this.

The polynomial fit approach to the representation of
the phase response function is naturally associated with a
physically realizable method of channel measurement. 1In this
method, pilot tones are transmitted to the receiver at fre-
quencies f, + Af and f, - Af. Phase detectors at the
receiver are tuned to each of these two frequencies, provid-
ing estimates of the quantities G, and G,. In addition, a
phase detector can be used to obtain an estimate of G, from
the data signal. When phase modulation is being used, a sig-
nal suitable for processing by the phase detector can be
derived by either squaring the incoming message signal or by

a decision directed measurement phase reversal scheme. Both
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of these methods are discussed by Proakis, et al. (28), in

connection with a different problem

5.3 Performance of the Adaptive Systems

In this section we show the results of computer simula-
tion experiments which were conducted in order to determine
the error probability of the adaptive receiver scheme formu-
lated above. Two adaptive systems were investigated. The
first of these employs a simple straight-line approximation
to the channel filter's phase response function. This means
that only the residual delay of the channel filter is compen-
sated for. The estimate of the filter delay is made by using
Equation (5-3) in conjunction with the pilot-~tone measurement
system which was described above. This means that only two
phase detectors are required at the detector and no measure-
ment is made on the data signal (i.e., G, is not measured).

The second adaptive system which was simulated attempts
to compensate both for the delay and linear delay distortion
introduced by the channel filter. Again the pilot-tone meas-
urement scheme is employed, but now both Equations (5-2) and
(5-3) are used to estimate the two required parameters.

In the simulation of each of the above adaptive systems
an ideal equalization filter was assumed to be placed in the
receiver system ahead of the matched filter. This filter
provides perfect delay and linear delay distortion compensa-
tion corresponding to the parameters measured by the pilot-

tone measurement system. In both of the systems investigated
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the value of the constant phase shift, given by C in

Equation (5-4) was ignored and was not compensated for by

the equalization filter. The reason for this is that in a
DPSK system, a constant phase shift in the channel filter will
have no effect on the operations at the receiver as far as
information processing is concerned. This is because an
identical phase shift is introduced in both the delayed
"reference" signal and in the non-delayed "information" sig-
nal and this phase shift will not effect the output of the
multiplier and low pass filter combination.

Figures 20, 21, and 22 are graphs showing a comparison
of the error probability performance of the nonadaptive and
the two adaptive systems. Each graph is a plot of error
probability versus SNR for a fixed relative data rate. 1In
Figure 20 the relative data rate for each set of points is

«56. Four curves are included in this graph:

1. Nonadaptive system, theoretical error prob-
ability (results from Chapter II).

2. Nonadaptive system, experimental error rates
(results from Chapter III).

3. Adaptive system, delay correction only,
experimental error rates.

4. Adaptive system, delay and delay distortion
correction, experimental error rates.

The three experimental curves shown were each obtained from

a set of 1,000 channel samples. The same set was used for
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each experiment, thus allowing a comparison to be made
between them. Figure 20 shows us that the adaptive phase-
correction systems do provide significant, measurable improve-
ment in the error rate performance of our communication
system at all SNR's. The relative improvement provided by
these systems varies significantly from the low SNR region,
where there is very little improvement, to the high SNR
region, where a large improvement is apparent. The reason
for this is that the adaptive systems being investigated here
combat the effects of pulse distortion and intersymbol inter-
ference but do not change the effects of additive noise on
the system. Thus, at lower SNR's where the additive noise
effects are prevalent, very little improvement is noted.
However, at high SNR's where distortion effects are most
important, much greater improvement is noted. The relative
improvement (ratio of adaptive errcr rate to nonadaptive
error rate) at infinite SNR is about one-fourth for both
systems,

Figure 20 also indicates that the improvement provided
by correcting for linear delay distortion and delay is only
slightly greater than that provided by correcting for delay
alone. Compared to the improvement provided by the delay-
correction system, the further improvement provided by the
delay and delay distortion correction system is virtually
insignificant. This indicates that the effect of the channel

filter delay is much more important in the degrading of the
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system's performance than the effect of linear delay distor-
tion.

Figure 21 is a plot of the experimental performance of
the two phase-adaétive systems along with the theoretical
error probability of the nonadaptive system for d = 0.4.

For each of the experimental curves in this graph, 1,500
channel samples were used. In general, the results shown by
this graph are quite similar to those of Figure 20. We again
note that both adaptive systems provide significant reduc-
tions in error rate at all SNR's when compared to the per-
formance of the nonadaptive system. However, for this rela-
tive data rate, the irreducible error probability of the
adaptive systems is roughly one-twentieth of the nonadaptive
system's while it was only one-fourth of the nonadaptive
error probability for d = 0.56. This means that the relative
improvement of the adaptive system is far greater for d = .4
than for d = .56. We also note from this graph that the rel-
ative improvement of the delay and delay distortion correc-
tion system is only slightly greater than that of the delay-
only correction system. As in the d = .56 case, the relative
difference between the two systems compared to the improve-
ment they show over the nonadaptive system is nearly insig-
nificant. We do note, however, that for all SNR's except

r = », the estimated error rate of the delay and delay dis-
tortion correction system is lower than that for the delay

correction system. This is, of course, the expected behavior
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since we expect a greater degree of correction to yield a
lower error rate.

Figure 22 is a graph of the same type of information as
is shown in Figures 20 and 21, but in this plot the relative
data rate is 0.28. For each of the experimental curves on
this graph, 2,000 channel samples were used. The results
shown in this graph indicate that the same basic behavior is
occurring at this data rate as occurred at the other two data
rates discussed above. We again notice a significant
improvement in error probability performance of the adaptive
systems compared to the non-adaptive one, the relative
improvement being much greater for SNR's where signal distor-
tion and intersymbol interference are of most importance. As
before, only a small difference in performance exists between
the two adaptive systems, with the delay and delay distortion
correction system exhibiting consistently lower error rates
than the system for delay correction only.

In this case we find that the relative improvement of
the irreducible error probabilities for the two adaptive
systems is only slightly smaller than it was in the d = .4
case, still being approximately one-twentieth. Thus the
change in relative improvement at r = « is not as great when
comparing the d = .28 case with the d = .4 case as it is when
the d = ,4 and d = .56 cases are compared. However, when one
considers the method we are using for representation of the
channel's phase response function (approximation by the

delay and linear delay distortion components only), it is
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apparent that the representation, and therefore the correc-
tion, should improve as the signaling bandwidth becomes
smaller. For this reason it is felt that the improvement
afforded by the phase-correction schemes examined above
should become greater as the relative data rate becomes
smaller. As discussed above this conjecture does seem to be
supported by the results of this section. From this reason-
ing, it is felt that the relative improvement of the adaptive
systems at the data rates investigated here should represent
the minimum relative improvement which should be attainable
at lower relative data rates.

The information we have obtained in this section on the
performance of the adaptive systems can be used to formulate
some design examples which indicate the improvement which such
systems can provide. We consider first the case of a system
for which the SNR available at the receiver is constant and
which must perform at or below some given error rate. 1In
this case we can show that if r = 30 db, the maximum relative
data rate for which P_ < 10”3 is 0.09 for the nonadaptive
system, while it is about .28 for either of the adaptive
systems. Thus the data rate can be tripled without increas-
ing the error rate. Similarly, if r > 40 db, the maximum

relative data rate for P_ < 1073

is .125 for the nonadaptive
system and about .37 for the adaptive systems. Again we see
that the data rate can be nearly tripled.

If the transmitted power must be held constant and the

error probability is required to be below some given value,
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then a somewhat different situation arises since the product
rd must be held constant. 1In this case we can show that for
Pe < 10™% and for rd = 100, the maximum relative data rate
for the nonadaptive system is .095, while it is 0.2 for the
adaptive systems. If rd = 200 and the same error probability
is desired, the maximum relative data rates become 0.125 and
0.24 respectively. Thus the data rate can be doubled in

each of these cases with no increase in error probability.
Finally, if rd > 500 and P_ < 107%, the maximum relative data
rates become .125 for the nonadaptive system and .4 for the

adaptive system. Thus the data rate can be more than tripled

in this case.

5.4 Performance of a Physically Realizable Adaptive System

In Section 5.3, we considered an idealized adaptive
receiver system for combating the effects of frequency selec-
tive fading. The idealizations involved in examining the

system were:

1. The phase response function of the channel
filter was measured perfectly at the fre-
quencies of interest.
2. A perfect equalizer filter was available for
delay and delay distortion correction.
In this section we will determine the effect of relaxing
these idealizations so that the mathematical model becomes
one which could be implemented with physical components. To

do this, we will consider the effects on the system
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performance of introducing additive noise in the phase meas-
urement system and of employing a physically realizable phase
equalization filter.

To obtain an understanding of the possible effects of
additive noise in the measurement system, let us consider
the SNR's which might be required for the phase detectors of
this system. It is reasonable to assume that if the SNR at
the input of a phase detector is greater than 20db, then vir-
tually perfect measurement of the channel filter's phase
shift can be achieved. 1In this case signal-to-noise ratio
must be interpreted as the ratio of the power in the sinus-
oidal pilot tone to the average noise power at the detector
input. Now the bandwidth of the predetection filtering
system required for the pilot tone phase detectors should be
set equal to the fading bandwidth of the medium. This allows
the fluctuations of the pilot tone to pass through the filter
but prevents all unnecessary additive noise from reaching the
detector input. Since the additive noise is assumed to be
white, it can be seen that the ratio of noise powers at the
pilot tone and data channel detectors is just the ratio of
the channél's fading bandwidth to the signaling bandwidth of
the system. Now, if the data channe} is operating at a SNR
of 20-30db, very good phase response measurements can be
obtained if the phase detector input SNR is equal to this.
Therefore, good phase measurements could be obtained with

each pilot tone having a power of §£ times the data channel
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power, where Bf.is the channel's fading bandwidth. For a

troposcatter system, the following values might apply

B, = 10Hz

£

Bc = 1 MHz

d = .2

In this case, the ratio of power required for both pilot
tones to data channel power would be

%;—%%T)- 107" = .1%
Thus even if 10db more SNR were required for the pilot tone
phase detectors than for the data channel, only 1% of the‘
total transmitted power would be needed for the pilot tones.
From the above discussion it is apparent that for many
systems of practical interest, excellent measurement cof the
channel filter's phase response function can be obtained by
using only a very small portion of the total transmitted
power for pilot tone sounding of the channel. Thus, the
additive noise in the channel meaéurement scheme will have
negligible significance on the performance of the adaptive
system we have studied.

We next investigate the effect of employing a physically
realizable filter for the phase equalizer in the adaptive
receiver. Although there are many possible schemes for
implementing such an equalizer, we will consider only one.

It is felt, however, that this scheme is representative of
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the various possibilities which exist. We will assume that

a bank of variable single-pole all-pass networks are to be
used as the phase distortion equalizer. A single-pole (band-
pass) all~-pass network is specified by two poles and two
zeros in its s-plane plot. The two poles are located at

§ = -a + ju,_ and the two zeros at s = a * ju.. Because of
the symmetrical nature of these pole-zero positions, the
amplitude response function of the all-pass network is con-
stant for all frequencies. 1Its phase response function, how-

ever, is given by

w - w + w
P (u) = -2 Ean-l(——-—“i;-) + tan"‘(—-——-—r-)] (5-5)

a a

Thus the envelope delay function of N such networks in cas-

cade is given by

= .4 . - 1 1 _
Bc(u) = - I {N Pc(w)] = 2Na[;2 + ;} (5-6)

2 2 2
+(w- + (wt
{w wr) o+ (w Wy

It can be shown that if W, >>a, the envelope delay of the
one-pole all-pass filter is a maximum at w = Wy and that thg
value of the envelope delay at this point is 2/a seconds.
Using the above facts, an algorithm for compensation of
a channel's residual delay characteristics by N identical
cascaded all-pass networks may be constructed as follows.

Let w, be the center frequency of the data channel and D be

the measured residual delay. Then we adjust each filter so
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that its center frequency equals w, and its delay at w, is
exactly -D/N. Thus each filter is specified by the two equa-

tions

U)r = wo (5"'7)

a =-2N/D (5-8)

In order to determine how well the above filtering
scheme would compare to the ideal adaptive filtering investi-
gated in the previous section, the computer simulation pro-
gram was modified to simulate the presence of the physically
realizable all-pass networks in the receiver. The algorithm
of Equations (5-7) and (5-8) was employed in the program.
Tables 1 and 2 give the results of these simulations. 1In
each of these tables, the estimated standard deviation of
the error probability estimates is shown in parentheses next
to the estimate. Table 1 shows the results of two simula-
tions of the physically realizable systems along with the
performance of the ideal delay correction receiver. The two
physically realizable systems which were simulated contained
one and three single-pole all-pass networks respectively.

All of these experiments were performed with d = .4 and used
the same set of 1,500 channel samples.

In this table, it can be seen that for both the three-
network and the one-network equalizers, the performance is
nearly identical to that of the ideal equalizer. Indeed, for

low SNR's the error probability is slightly lower than that

of the ideal system.




Table 1.

SNR
104b
20db
304b
40db

Table 2.

SNR

10db

204b

30a8b

40db
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Error Probabilities for Physically Realizable and

1deal Adaptive Systems - 4 = .4.

Ideal Delay
Correction

.0475(.00205)

.00626(.00099)
.00210(.00062)
.00142(.00056)
.00117(.00055)

Physically Realizable
Delay Correction

One All-Pass
Network

.0464(.00214)

.00593(.00086)
.00202(.00055)
.00135(.00055)
.00117(.00055)

Three All-Pass
Networks

.0472(.00216)

.00618(.00087)
.00207(.00061)
.00141(.00055)
.00117(.00055)

Exror Probabilities for Physically Realizable and

Ideal Adaptive Systems - d = ,56.

Ideal Delay

Correction

.0717(.0032)

.0209(.0023)

.0163(.0024)

.0156(.0025)

.0153(.0025)

Physically Realizable
Delay Correction -
One All-Pass Network

.0689(.0026)

.0204(.0019)

.0153(.0019)

.0148(.0019)

.0148(.0020)
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In Table 2 the results of computer simulations of the

realizable system with one all-pass filter and of the ideal

delay correction system are compared for d = 0.56. Again we
see that the performaﬁce of the two systems is almost ident-
ical. Thus we see that it is possible to construct physical
networks of reasonable size which will serve quite well as
the equalization filters in the adaptive systems proposed
above. 1In fact, practically no difference in performance

from the ideal performance shown here should be expected.

5.5 Summary

In this chapter it is shown that the experimental
results of Chapter 1V on the performance of the Gaussian
fading system with amplitude distortion only can be inter-
preted as the performance of an ideal adaptive system which
corrects perfectly for channel-induced phase distortion.
The potential performance gains of such a system provided
the motivation to develop a pilot tone measurement system
and an approximate phase equalization technique - equali-
zation for delay and linear delay distortion - to improve
the performance of the nonadaptive selective fading system.
Performance results were then obtained by computer simula-
tion for the pilot tone adaptive system with ideal phase
equalization filters for delay and delay distortion. It was
shown that reductions in error rate by factors of five to
twenty could be obtained with such a system operating

between d = 0,28 and d = 0.56. Finally it was shown that a
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physically realizable implementation of such a system can be
expected to perform at virtually the same levels as the

idealized pilot tone system.
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CHAPTER VI: CONCLUDING REMARKS

6.1 Summary and Conclusions

This report has been directed toward a study of certain
adaptive phase compensation receiver systems for selective
fading channels. The evaluation of the error rate perform-
ance of such systems required experimental simulation tech-
niques. For this reason, the research began with an exact
analysis of the error rate properties of nonadaptive receiver
systems in the presence of selective fading channels. This
analysis was carried out for three different combinations of
channel correlation function and transmitted pulse shape.

The results of this analysis showed that significant differ-
ences in error rate performance can occur for different pulse
shapes employed on the same fading channel while little dif-
ference in performance seems to occur when the same pulse
shape is used with different channels.

The work of Sunde has important connections with the
research carried out for this report. First, a basic assump~-
tion of Sunde's work - that the effect of phase distortion is
much more important in Gaussian fading channels than that of
amplitude distortion - is a basic idea in the formulation of
the adaptive system presented herein. Second, Sunde's

approximation to the error probability in a selective fading
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communication system represents a great computational simpli-
fication over the more precise technique of Bello and Nelin.
For these reasons, a careful formulation of the Sunde error
rate approximation was carried out for this research. It
was found that the Sunde approximation does‘not provide a
good estimate of the error probability when the frequency
selective fading is of importance.

The experimental phase of this work consisted of compu-
ter simulation of a communication system operating over a
frequency selective channel. The simulation system was
designed in such a way that extensive modifications of the
channel structure or the receiver filter system could be
implemented. The first experimental results showed that such
a computer simulation provides good agreement with theoret-
ically predicted error rates for nonadaptive systems operat-
ing over the Gaussian selective fading channel. Next exper-
imental results were presented which show conclusively that
the Sunde conjecture concerning the importance of phase dis-
tortion effects compared to amplitude distortion effects is
true. This allowed the formulation of adaptive receiver
systems which attempt to measure the instantaneous phase
deviation present in a fading channel and to compensate for
it. Two such systems were formulated - one which compensated
only for delays introduced in the random channel filter and
another which compensated for delays and linear delay distor-
tion introduced in the channel filter. The computer simula-

tion of these systems showed that for relative data rates
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near 0.3, more than one order of magnitude improvement in
error probability can be realized; while for relative data
rates near 0.5, a factor of five in improvement of the error
rate can be achieved. These results also showed that such
systems provide an increase of two to three times in allow-
able data rate for fixed error probability when the system
SNR is reasonably high, It was found that correction for
delay and delay distortion offered little more improvement
than correction for delay alone. It was also shown that a
physically realizable implementation of the adaptive delay-
correction system can be expected to perform at virtually
the same levels as the idealized pilot tone system.

In conclusion, this research has contributed to the
general understanding of the performance of communication
systems in the presence of selective fading channels, pointed
out some errors which have been made in previous analysis
attempts for such systems, and has indicated a practical
method which is capable of rendering significant improvement
to the irreducible error rate performance of some such

systems.

6.2 Recommendations for Future Investigation

The results of this research have suggested several
investigations which would be of interest. The first of
these is an investigation of the design problems which would
be associated with the implementation of a phase correction

receiver system for selective fading channels. One of the
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most important of these problems concerns the implementation
of a variable filter system to compensate for the phase dis-
tortion. An intereéting aspect of this problem is that
integrated circuit technology may provide an easily-
implementable method of constructing such a phase correction
system. It may be possible to design and economically mass
produce a single phase correction circuit with the property
that a number of such circuits could be cascaded to compen-
sate for a given degree of phase distortion. 1In this case a
switching system could then be constructed to "switch in"
the proper number of such circuits in order to effectively
cancel the measured phase distortion.

Another question which naturally arises from the results
of this research concerns the usefulness of representation of
the channel phase response function in terms of cubic or
higher-order polynomials. Using the measurement techniques
presented in this report, this would require more than two
pilot tones for the channel measurement systems, but it is
possible that in FDM systems it would be natural to place one
pilot tone i;’the guard band between each data channel - thus
easily allowing the extension to higher order polynomials for
representation.

The results of Chapter II provide two interesting topics
of investigation. The first of these arises from the fact
that a significant difference was noted in the irreducible
error rates for two different signal shapes when used with

the same fading channel. This indicates that the problem of
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choosing an optimum pulse shape for digital signaling over
selective fading channels may be a fruitful one.

In connection with this problem, it is encouraging to
note that our results have indicated that the performance of
a given signal over different channels may not vary greatly.
Thus there is some reason to believe that a signal which is
optimum for one channel model may yield very good performance
with other channels,

The second topic of investigation is related to the
fact that the conditional probabilities (the Papcg ' S) were
found to approach unequal limits as the SNR becomes infinite.
Indeed, p;,;, and pgy,,; approach zero while the other four
conditional probabilities approach nonzero limits. From
this, it appears that if one were constructing an encoding
scheme to encode multilevel data (such as the output of a
PCM quantizer) into binary data, it would be highly desir-
able to encode the most significant data digits in such a
way that they result in the sequences with the lowest total
error probability. It would be of interest to determine the
performance of a system using such a coding scheme and com-
pare this to the perfofmance resulting from the use of the
conventional methods.

Finally, it is necessary to point out that all the
research described in this report has been based on the
assumption of a Gaussian fading channel model. Therefore
the usefulness of our results is probably in direct propor-

tion to the degree to which the Gaussian fading channel model
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approximates the effects of physical channels. 1It is felt

that analysis work such as that in this report must procede

hand-in-hand with channel characterization investigations

designed to indicate the usefulness and weak points of such

analysis.

Among the channel characterization problems which

should be investigated are:

1.

Can any of the common scatter/multipath
channels be assumed to. possess Gaussian fad-
ing statistics?

If so, then what is a good frequency corre-
lation function to use in mathematically
representing such channels?

If such channels do not possess Gaussian sta-
tistics, is it still possible to predict
system performance over such channels (such
as error probabilities) by approximating the
channel as Gaussian?

Is it possible that a relatively simple
channel model, such as a two-path model, can
predict the performance of a selective fading
communication system as well as or better
than a more complicated one?

For engineering applications, is it possible
to characterize a fading channel by a few
parameters (such as coherence bandwidth) in

order to roughly predict a system's performance?
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It is felt that there are a large number of such problems in
channel characterization whose results should have definite:
bearing on the research being done on selective fading com-
munication systems, and that similarly, the results of such
analytical investigations will help to point out the signif-

icant areas of channel characterization research.
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APPENDIX A

ERROR PROBABILITY CALCULATIONS FOR THE G-F CHANNEL

In this appendix

culation of the error

AND SQUARE PULSE SIGNALING

nel with square pulse signaling.

(2-8) shows that this

we show some of the details of the cal-
probability expression for the G-F chan-~
Examination of Equation

requires that we compute the three

moments u¥v, |u|2, and |v|2 conditioned on the various given

| modulation sequences S.

These moments, when used with

Equations (2-8), (2-7), (2-4), and (2-5) respectively, yield

the desired error probability.

For computing these three

desired moments, it is convenient to set up the following

notation:

Mo

??Cd = Jul? given
g?cd = [v]2 given
abed _ u*v given

S = (alblcld)
S = (a,b,c,d) (A-1)

S = (a,b,c,d)

Now it can be shown that these three moments can all be

computed from the following relation (5):
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abed _ [~ abed abcd, 1,
nab I_.p(t)Br (1) [(B2P%4 () ) *ar+32EN 5
a,b,c,d,r,s =0,1 (A-2)

where p(r) is the delay spread correlation function defined

by Equation (1-4), § is the Kronecker delta, and where B is

xs
given by
Bade(r) = Jw x* (t - kT, )[s,(t + 1) - s,(t + t)]ldt (A-3)
k —w abed b’ *71 0
Here x

abcd(t) is the transmitted signal (see Figure 1) given

that § = (a,b,c,d) and s; and s, are the pulse signals dis-

cussed in Section 1l.4. For the case which we are considering,

s, and s, are real and anticorrelated, so we may simplify
(A-1) to
abcd -
Bk (1) = 2 J-mxabcd(t-ka)s(t+r)dt (A-4)
where

s,(t) = s(t) = -s,(¢t)

We now recall that the square pulse was defined in

Equation (2-12) by

'ZE/Tb . 0<t<Tb
s(t) = (A-5)
0

' otherwise

Substituting (A-5) into (A-4) the following B functions are

obtained:
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-

B (1) = 4E ||y,

-

B, (1) = 4E || <Ty

4E(1 + 2T/Tb) ’ -Tb<ti 0

B! %) =
4E r 0cT<Ty
B?llo(T) = JiE r ~Tpe120
4E(1 - 21/T ) , O<t<Ty
o111
B, (1) = 4E o 11leTy
0111 0110
B () = BYMO(n) o ITleTy,
52101(1) = 4E(-1 + 2{v{/7), |tl<Ty

B! (1) = 4EQL - 2|t|/T). [1leTy

B;xoo( ) = _B?llo},) , |1|<Tb
Bl'%%(1) = Bg'lo(r) o LTleTy
B, %) = B! %) o lrleTy
B0 - B, ey

In Equation (2-10) the delay spread correlation function

for the G-F channel is given by

pl1) = °02/1.TBC exp[—(ﬂBct/Z)zl (A-T7)

We must now evaluate the various required moments using

Equation (A-2). This equation requires integration over the
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infinite interval on 1. However, the B functions are evalu-
ated in (A-6) only for ir|<Tb, i.e., only adjacent-baud inter-
symbol interference is accounted for. We therefore will
approximate the moments by using Equation (A-2) but inserting
in it the B-function expressions in (A-6) instead of exact B
functions which would be valid for all 1. This approximation
1s justifiable if the p(1) term in the integrand has tails
which are extremely small for ix§>Tb. This condition should
be assured if the e’ point on the p(r) function is not
allowed té exceed Tb' This will insure that at least 99.5%
of the area unuer the p(:) function will lie in the region

i?E“Tb. We therefore require

4
—— « T
nBC b

= .786

This inequality gives the condition for which the exact B
functions can be replaced in (A-2) by B functions which take
into account only adjacent-beud intersymkol interference.
Thus, we can interpret this restriction as indicating the
range of data rates for which the intersymbol interference is
essentially entirely caused by pulse overlap from only adja-
cent bauds. Using the above approximation, the following

values are found for the required conditional moments.
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1111 mll!'! = 32E(0,%E + N)

111 mllll
11 00

1111 22
m o = 320,°E

0110 m = 320,2E? (1-4c,a+4c,da®) + 32 EN|

0110 0110
m, Moo

= 320,°E% (1 - 4c,q)

01 1111
0111 m;, = m;,

111 0110
1 = My,

= 320,°E*(1 - 2c,d)

(A-8)
0101 mgg’' = 320,2E? (1-8c,a+8c,d?) + 32EN,
1 0101
1 = Ry

00! = -320,%E?(1 - 8c,d + 8c,d?)

1100 mllOO = mOllO

1100 00 00
1100 0110
mpy, = Mpp
1100 0110
Mo = "My
0100 0110
0100 _ 0101
11 Moo

my, = -320,2E*(1 - 6c,d + 4c,d?)

where c, = 1/»/x , and c, = 1/x2 .




135

We can now use the moment expression ot (A-8) in
Equation (2-8) to obtain the following values for the R's.

Recalling that r = oqu/NO, we find

R ., =2r
. 2r(l - 4c;d)
R‘ = ’
Glio
1 + r(d4c,d?)
R _ 2r(l -~ 2C1d)
Ciis 1+ 2rE(d) + r?H(d) - r(l - 2c¢,d)
with E(d) = 1 - 2¢c,d + 2¢c,d’
H(d) = 1 - 4c,d + 4c.d‘
R),,, = 2r(l - 8c,d + 8c.d") (A-9)
R'l T o ——— .
Yl ,
1+ r(4r,d*;
. _ 2r(l -6c;d + 4c,d*)
Ro1o0 = = > 2
1 + 2rA(d) + r°B(d) =- r(l-6c,d + 4c,d")
with A(d) = 1 - 6c,d + 6c,d?

B(d) = 1 - 12¢,d + (l2¢,+ 32c,’)d*-64c c,d’+32¢/a"

It is desirable to simplify the somewhat unwieldy expres-
sions for R,,,, and R(,,,. To develop such a simplification

we will make use of the power series

e e 1 11 3
rl + x = l+%X‘7’%X2+I'I . Ex3 ~ e (A-10)

which we will truncate after the first three terms since the

quantity x will be required to be much less than 1. In the
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expression for Ry, ¢ We are interested in

Y1 + 2rE(d) + r?H(d) = "1+2r(1-2c,a+2c,d?) + rZ(l-4c, d+4c,d?)

= (1 + r) Yl-4c,dg(r)+4c,d*g(r) (A-11)
where

g(r) = r/(1l+r)

Using (A-10) in (A-1ll) and dropping all terms of order a} and

higher, we obtain

/1 - 4c,dg(x) + 4c,d’g(r) = 1-2c,dg(xr)+2d?(c,g(r)- c;2g2(r)])
(A-12)

Thus Roi11 becomes

2r(l - 2c;d)

“HYY O (ler) (1-2¢,9(r)d + 2d%[c,q(r)-c, 2g? (r) ] }-r(1-2¢,d)

(A-13)

In the expression for RélOO' we are interested in

Y1 + 2rA(d) +riB(d) =

1+2x(1-6c, d+6c,d?) +r? [1-12c,d+(12¢c,+32c, 2) d>-64cic, a3 +32¢, 2a")

(A-14)

Using techniques identical to those above, we obtain
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R . 2r(l -6c,d + 4c,d’)
(l+4r) {1-6c g (r)d+2d- [3c,g(xr)-c, g’ (r)}}-r (1-6c, d+dc,g)

(A-15)

The above approximations have been used in the expressions of
Equation (2-15).

All the generalized SNR's which have been found here
except for R,,,, differ from those of Bello and Nelin. 1n
Figure 23, the irreducible error probability computed from
the expressions of this appendix and from Bello and Nelin's
expressions are compared. As can be seen, there is a discern~
ablc difference between the two results, although they dif-

fer by less than an order of magnitude.
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BELLO AND NELIN
RESULTS
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Figure 23,
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Comparison of Irreducible Error Probability from

Bello and Nelin's Results and from Results of
this Report.
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APPENDIX B
ERROR PROBABILITY CALCULATIONS FOR THE

S~F CHANNEL AND SQUARE PULSE SIGNALING

In this appendix, details of the error probability
calculations for the S-F channel with square pulse signal-
ing are presented. Much of this work parallels the
developments of Appendix A, and some reference to equa-
tions in that appendix will be necessary; Since the work
of both Appendix A and this appendix are concerned with
square pulse signaling, an examination of Equétions
(A-2) and (A-4) shows that the B functions of Appendix A
will be identical to the B functions required for this
work. Furthermore, we see that in evaluating the condi-
tional moments through the use of (A-2), the only change
required from the previous work is to replace p(r) for
the G-F channel by p(r) for the S-F channel. From Equa-
tion (2-1l1), it can be seen that the delay spread cor-

relation function for the S-F channel is given by

Ro "T!iTm

plv) (B-1)

0 ,}r|>Tm
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Using this expression in (A-2) yields

abcd - abcd abcd -
m R, | B_ (1) [Bg (v)1%dv + 32ENgS (B-2)

At this point we note that since the B functions have been

given in (A-6) only for values of : less than T_ in absolute

b
value, the integral in (B-2) can only be evaluated if Tm<Tb.
T
Since we have defined d = TE in this case, we see that we now
b

have the restriction

We note that unlike the situation encountered in Appendix A,
no approximation is required to evaluate (B-2) as long as the
above restriction is met. Thus, this restriction can be con-
sidered to define the range of d for which our adjacent-baud
intersymbol interference analysis will be valid, or equiva-
lently it is the range of d over which we are assured that
adjacent-baud overlap is the only source of intersymbol inter-
ference in the system.

When the B functions of (A-6) are substituted into (B-2),
it is found that the resulting expressions greatly resemble
the expressions obtained in (A-8) of Appendix A. The resem-
blance comes from the fact that corresponding to each power
of d in the expressions of (A-8) there is a similar power of
d in the corresponding evaluation of (B-2), only the coeffi-

cient of the term being different. Thus, (B-2) could be




evaluated by making

sions of (A-8).

1111

0110

0111

0101

141

the following substitutions in the expres-

0101
Moo

0101

0101
m

32R(T E?(l-4c;d+4c,d?) + 32EN;

Ullg¢

L

22
32R,T _EX (1 - 4cyd)

1111
Mo

0110
Mo

2
32R,T E (1 - 2c;d)

(B-3)
22 2
32R T _E° (1-8c,d+8c,d?) +32EN

0ionl
Mg

2 2
-32R T E*(1 - 8c,ad + 8c,a?)
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J1G0 _ _CY16
1100 m,, = My,
1100 0110
my; = W5y
1160 _ 0110
m g = omy
Gicud gilvy
0100 me . = My
Glee _ _crul
i =m.,
m %% o J32RT E (1 - 6c.,d + 4c.a’)
{0 0'm 3 "
where
c, = 1/4
c, = 1/6

we can now

{2-8) to obtain

use the above moment expressions in Equation

the following values for the R's. Because of

the great similarity in the basic form of the expressions for

the m's in (A-8)

and (B-3), we also find a similarity in the

forms for the R's of Egquation (A-9) and for the present case.

Recalling that r is now given by RonE/Nuo we find

Ry, = 2r

R 1o

0111

2r(l - 4c3d)

1 + r(4chd2)

2r(l - 2c,d)
Y1 + 2rE(d) + r?H(d) - r(l - 2c,d)
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with
E{d) = 1 - 2c,d + 2c 42
H(d) = 1 - 4c,d + 4c, d*
' = - 2
R, = 2r(1 8c,d + 8¢, d)
2r(1 - 4c_d)
R = 3
1190 P)
1 + r(dc,d”)
R' = 2r(l - 6c;d + 4c.,d?)
ci 0 / = = -
‘ “1 + 2rA(d) + r?B(d) - ril-6c,d+4c d’)
with

A(d) = 1 - 6c,d + 6c, @’

B(d) = 1-12c,d+(12c,+32c, )d’-64cyc.d’ + 32¢,°a"

(B~-4)

As was the case in Appendix A, it is possible to simplify
the expressions for R;,,, and R;, ;.- Since we are dealing
with expressions which are identical in form to those of
Appendix A, we can write the approximations for R.,,, and

R directly as

AR R
AEPERSIA Y

2r(l - 2c3d)

(L + r){l + 2c,g(r)d+2d‘ {c,g(r)-c, g’ (r) ] }-r(1-2c,d)

2x (1 - 6c,d + 4c“d£)

(1+r) {1-6c,g (r)d+2d”(3c,g(r)-c,;“g’ (r) ) }-r(1-6c ,a+4c d’)
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These approximations have been used in the expressions of

Equation (2-19).
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APPENDIX C
ERROR PROBABILITY CALCULATIONS FOR THE

S-F CHANNEL AND RAISED COSINE SIGNALING

In thisappendix, details of the error probability calcu-
lations for the S-F channel with raised cosine signaling are
presented. The general method for carrying out these calcu-
lations is the same as that used in Appendix A, but the use
of the raised cosine signal causes significant changes in the
way the computation must be carried out.

As was the case in Appendix A, we first note that

Equation (2-8) calls for us to compute the three moments u*v,

TGTF, and T;i‘ conditioned on the various possible transmitted

sequences. Using the definitions of Equation (A-1l), we find
that the conditional moments can be evaluated by evaluating
Equations (A-2) and (A-3). The B funétions of (A-3) can be
determined by considering the raised cosine signal as given

in Equation (2-14)
s(t) = v2BE {[sinc(2Bt- %)+sinc(28t-%)] (C-1)
Now the B functions of (A-4) are given by

abcd © * _
Bk‘ (1) 2J~m xabcd(t kT))s(t + 1)dt (C-2)
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where xabcd(t) is the transmitted signal given § = (a,b,c,d).

We can write xabcd(t) in terms of s(t) as follows

4
x (¢) = §  s;slt+ (3 -1)T]
abcd i=1 * b (c-3)
a,b,c,d = 0,1
where
s, = 2a - 1
s, = 2b -1
‘ (C-4)

Thus the B functions can be written

4 ®
Bade(() =2 ) s, s*({t + (3 - i - KT Js(t + r)dt
k i=1 Y J-a b

4

=25 s.I(3-1i-k,1) : (C-5)
. 1
i=1

where
I(j,1) = ; s*(t + ij)s(t + t)dt (C-6)

Substituting (C-1) into (C-6) and using the fact that

[ sinc(x + a)sinc(x + b)dx = sinc(a - b)
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we find

1
I(j,v) = 22[5 sinc(2Bt-2j-1) + sinc(ZBr-Zj)+% sinc{2B1-23+1))

The B functions can now be used to compute the conditional

moments with the aid of Equation (A-2)

2 i abcd
m2PC% o 1 p(n)BaPed (1) (827 (1) ) "ar+32EN 6

rs I r s rs
a,b,c,d,r,s = 0,1 (C-8)

Substituting the p(1) function for the S$-F channel [see

Equation (B-1l)], and the B-function expression of (C-5), we

obtain
m bed bed
m2P% o g, | B2 (0 (827°% (1) 1*ar+ 32BN
rs -r T [ rs
m
4 4 T .
= 4R, | ] sisk[ I(3-i-r, 1) I%(3-k-s,1)dv+ 32ENGS _
i=1 k=1 ‘=T
i
= 4R, } ) s.5.J(3-i-r,3~k-s,T_) + 32 EN;6
Oi=l k=1 1 k "“m rs
(C-9)
where
L *
J({m,u,L) = }( I{m,t)I(u,x)d- {C~10)
-L
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The problem of evaluating the required conditional moments
now becomes one of evaluating the J functions. To do this,
we first reduce J to a sum of finite convolutions of sinc
functions. These convolution integrals are then evaluated
in terms of known functions. When (C-6) is substituted into

(C-10), the J function becomes

) 3 1 1 1, (P
J(m,u,L) = 47 § ! (1 - 33D (-3Inh | sinc(2B1-2m+j)°
- — I
j=-1 n=-1 ~L
- sinc(2Bt - 2u + n)dr
A s
= 4E° ) (1= 7lji)(1- 7ini)x(j-zm,n-zu,zsm
j=-1 n=-1 (C-11)
where
M
K(p,q,M) = j sinc(x+p)sinc(x+g)dx (c-12)
-M

The evaluation of the integral K will be discussed at the end
of this appendix. We now point out that the conditional

moments can be written in terms of K by combining (C-11) with

({C~-9). We obtain

8R E° 4 4 1

¥ 1,. 1
) s;s, 1 1 (-3l3h (Q-3InD)-

abcd
m = B . ]
rs i=l k=1 j==1 n=-1

(C-13)
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Now we know that the error probability is dependent only on
the parameters r and d. Thus, in order to compute the error
probability, relationships must be found which relate the
constants in (C-13) to r and d. To do this it is necessary
to note from Equation (2-8) that if all three moments for a
given sequence abcd are multiplied by the same constant, then

the value of R is not changed. Thus the resulting condi-

abcd
tional probability is not changed. Making use of this fact,

1

we multiply m??Cd in (C-13) above by (EN,) ' to obtain

1

8RE 4 4 1
- abcd of 3 ! 1. 1,
m = ) s.s. ) (L - 51311 - 5in})
rs BNy j=1 k=1 ' X j2-) p=-2 2 2
-K(3-2(3-i-r), n-2(3-k-s), 2BT )+ 326,  (C-14)

Now we see that two constants are required to evaluate this

. RgE . .
expression - —s and BT,. Recalling that r and d have been
p BN, m
defined as
Tm
d = &~ = BT
Ty
.- ZRonE
z Ny

we see that the constants required to evaluate (C-14) are

given by

BT = d (C-15)
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Thus, given r and d, (C-15) and (C-14) can be used to deter-
mine the conditional moments to be used in (2-8) which then
determines the error probability.

To evaluate the integral K we must consider two cases,
p=gqand p # q. We consider the case where p # g first. If

p ¥ g, we can write

M

- sin n(x + p) sin n(x + q)
K(p,q,M) J_M ~Tx 7 ) e dx
1 1 M sin n(x + p) sin s(x + q)
= — — ' dx +
i q P f =M (x + p)
1 "o ( ) si ( ) ]
1 sin n(x+p) sin n(x+q _
5=g j x % q) dx (C-16)
-M
Now
{M sin_v(x+p) sin n(x+q) 4.
YoM (x + p7
2n(p + M) _
= % cos =»(p - q) j 1 - cosly) dy
2n(p - M) y
27(p + M) .
- % sin »(p - q) J sir(y) dy (C-17)
2n(p - M) Y
= % cos n{p - q){Cin{[2n(p + M)] - Cin[2n(p - M)]

- % sin n(p - q) {Si[2n(p + M) - Sil2n(p - M)}
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where Si(x) and Cin(x)are defined by (29)

r X
cin(x) = -I;_EY:E_(.L), dy
‘0
(C-18)
. [* sinl(y)
Si(x) = -—-;—X'— dy
‘0

sin n(x + p) sin s{x + gq
-M (x + q) ‘

dx

= 7 cos n(q - p)(Cin{2r(q + M)] - Cin[2n(qg -M]) }

- 2 sin n(q - p){Sil2n(q + M)] - Sil2n(q - M)])

(C-19)

Using (C-17) and (C-19) in (C-16), we obtain

K(p,q,M = 3 PR (cinl2n(q + M}

- Cinf2r(g - M)] =~ Cin[2x(p + M)]+Cin([2=(p - M)])}
1 sin(p-q) - - Si[2= -

f 5 ;7—1%£%T {si[2n(p+M)] Si{2r(p - M)}

+ Si{2r(q + M)] - Si{2+(q - M) 1!} (C-20)

1f p = q, K(p,q,M) can be evaluated as follows:

M . 2
- [sin s(x + p)]
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n(p+M) . 2
- Sin’y gy m - oL, 1
)!(p-M) yz 2% (p+M) 2x (p-M)

+ Sosl2n(p+M)] _ cos|[2rn(p-M))
[2+(p + M) ] [2x{p - M)]

+ Si[2n(p + M)] - Si[2x(p - M)]

The conditional moments m;,, m,,, and m,;, can now be computed
by using Equations (C-20) and (C-21) in Equation (C-14). The
graphical results shown in Figure 7 through 10 of Chapter II
were all obtained by using a digital computer to evaluate

these equations.
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APPENDIX D

COMPUTER SIMULATION PROGRAMS

This appendix is devoted to a presentation of some of
the details of the digital computer simulation programs
which were used for this research. For all the computer
experiments reported herein, the objective was to evaluate
the error probabilities for a specified communication system
and channel model. With one exception, it was necessary to
compute an average error probability for a system employing
a random channel. The method used to compute error probabil-
ities of this type was a Monte Carlo technique and can be

divided into three major steps:

l. Generate a sample frqm an appropriately
defined ensemble of random channels.
2. Compute the system error probability con-
ditioned upon the generated channel sample.
3. Compute the average error probability for
this entire ensemble of channels generated.
A general block diagram of the computer program is shown in
Figure 24. As indicated in this figure, the program was
designed to compute error probabilities for several SNR's

during the course of an experiment.
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The generation of the channel impulse responses is
accomplished by linear filtering of a set of ﬁncorrelated
pseudo-random Gaussian variates. Details of the filtering
scheme and specification of the weighting factors are given
elsewhere (30). Since the experiments performed with this
system employed frequency domain techniques, the channel
impulse response is converted into its (discrete) Fourier
transform. Thus the transmission of a given signal through
the channel filter and the receiver matched filter can be
represented by multiplying the channel transfer function H(f)
by the squared modulus of the signal spectrum, |S(f)]2.

Also, any other desired operation such as adaptively con-
trolled receiver filtering or channel transfer function modi-
fication is performed at this point. Next the resulting com-
posite transform is inverse transformed to form time samples
of the entire linear system's response to a signal pulse.
This response, which we will denote as u (t) is sometimes
called the pulse transfer characteristic of the communica-
tion system. When only adjacent-baud intersymbol interfer-
ence is being considered, then only “o('Tb)' u,(0), and “o(Tb)
are computed.l Next, for a given modulation sequencez S =
(a,b,c,d), the values of u(Tb) and v(Tb) are computed (see

Figure 3). These are given by

lFor simplicity, we will assume that the pulse trans-~
mission characteristic is centered about t = 0.

2As in the analysis of Chapter I1I, we will compute the
error probability for the decision made at t = Tb.
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[
"
c
%)

p) = 52U (Tp) + s3uy(0) + s, uy (-T))

(D~1)
b) = sluO(Tb) + s,u,(0) + s3u0(-Tb)

<
N
<
3

where

s, = 2a - 1
s, = 2b - 1
Sy = 2c - 1
s =2d -1

Once U and V are specified along with the SNR, the error
probability conditioned on the given modulation sequence and

the given channel can then be computed as (8)

P_(8,V,1) = $(1-Q(/B,/A) + 0(/R,/B)] (D-2)

where

(o4
B = (G + v)’r
=82y x
K_E
2002 for the G-F channel
K =
(o4

2R0Tm for the S-F channel

and where Q(x,y) is the Marcum Q function. This error proba-

bility expression can be more easily evaluated with the use
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of a digital computer when it is rewritten in an equivalent

form (31):

P_(8,9,5) = & (1 + v(|/& - /B|, LB =Bl (p-3)
- /A + /B

where the plus sign applies if B > A and the minus sign
applies otherwise. The V function, which arises in studies
of damage probabilities associated with ballistic weapons, is

defined by

4L aL”

V(K,L) = % JK exp[: il_irkil x{} IO{%l_:TEil-x%]xdx {D-4)
This function is sometimes called the generalized circular
error function or the elliptic normal probability function
(32). An efficient digital computer scheme has been devel-
oped for evaluating this function (33). This scheme was
used as a subprogram of the simulation program to evaluate
Equation (D-3).

Equation (D-3) allows the computation of the conditional
error probability given the channel impulse response and the
specific modulation sequence S. It is therefore necessary to
compute the average probability of error for all possible
modulation sequences. This is done by evaluating Equation
(D-3) for each possible modulation sequence. If one adjacent
baud of intersymbol interference is being considered, this

means that 2° = 16 different modulation sequences must be
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accounted for. If intersymbol interference from two bauds
distant from the detection interval is to be considered,

then 2% = 64 different sequences must be considered. How-
ever, as indicated in Equation (2-3), certain simplifications
are possible which reduce the number of evaluations to six
and twenty for the one and two-baud cases respectively.

Once the error probability averaged over the additive
noise and overall possible modulation sequences is computed
for a specified channel impulse response, a new pseudo-
random impulse response is generated. The error probability
is then computed for the new impulse response and the process
is repeated for a prespecified number of times. Then the
average error probability is computed for all the channels
generated. This is done by simply computing the sample mean
of the various conditional error probabilities. Writing ﬁe
as the estimate for the complete system error probability and
P for the individual channel-conditioned error probabilities,

n

we have

where N is the total number of channel samples generated. At
the same time the sample variance of the set of conditional

probabilities was computed. This is simply
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This number is then used to compute the estimated standard
deviation of the error probability estimate. This is given

by

This estimate is used as a basis for judging the accuracy of
the error probability estimate and consequently to judge the
required number of channel samples which must be generated
in order to obtain adequate experimental results.

We conclude this appendix by briefly describing the
modifications of the basic simulation program just described
which were made to obtain the various experimental results
given in this report. The most extensive modification
required was for the experimental results of Figures 11, 12,
and 13 in Chapter III. These figures indicate the error
probability for a DPSK system whose transmission channel con-
sists solely of a time-invariant linear delay distortion fil-
ter. Since this case was concerned with a non-random time
invariant filter, the entire Monte-Carlo feature of the simu-
lation program was unnecessary. That is, it was simply
necessary to generate one chaﬁnel with the proper transfer
function and compute the error probability averaged over the
additive white noise and the possible modulation sequences.
Thus, for a given L, the channel transfer function was

» defined to be
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H(f) = expl[jnT, ‘LEf].

From this, the corresponding values of uo(-Tb), u, (0), and
uo(Tb) were computed. Then, since two adjacent bauds of
intersymbol interference were to be computed, Equations (D-1)
and (D-3) were evaluated the required twenty times and the
resulting average error probability recorded.

In Chapter 1V the results of three experiments are
recorded. The first of these is a simulation of the non-
adaptive communication system which was analyzed in Chapter
II. This system is simulated by the program with no modifi-
cations. That is, after the pseudo-random channel transfer
function is generated, it is immediately multiplied by the
composite signal-matched filter spectrum !S(f)!? and inverse
transformed. The Monte Carlo procedure is used with a number
of random channels sufficient to make the estimated standard
deviation of the estimate reasonably small.

The second experiment described in Chapter 1V is the
simulation of a flat Rayleigh fading communication system.
For this experiment the basic simulation program was used,
but the pseudo-random channel transfer functions were modi-
fied before being multiplied by |S(f)|?. The modification
consisted of replacing the frequency-dependent transfer func-
tion by its value at the center frequency, thu., making it a
constant across the baud. Writing H(f) for the generated
transfer function and Hm(f) for the transfer function after

modaification, we can express this as
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Hm(f) = H(O0)

The third experiment described in Chapter IV consists
of determining the error probability for the non-adaptive
system discussed in Chapter II when it is subject separately
to the phase and amplitude distortion effects of a Gaussian
random channel. For this experiment the basic simulation
program was again used, But the pseudo-random channel trans-
fer functions were modified in the following manner before

being multiplied by |S(f)|’:

Ho (f) = [H(£) |

for the pure amplitude selective fading case, and

Ky (£) = H(0) (H(£)/|H(£)|)

for the pure phase distortion fading case.

In Chapter V, experimental results for two adaptive
receiver systems operating with the Gaussian frequency selec-
tive fading channel were investigated. These systems con-
sist of a channel measurement system along with an adaptively
controlled linear filter placed between the channel output
and the matched filter input. Since the transmission system
from signal generator to receiver matched filter is entirely
linear, the method of implementing this experiment is basi-
cally the same as for the second experiment of Chapter IV

described above. Specifically, as soon as the pseudo-random
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channel transfer function is generated, the required measure-
ment is made. Then three transfer functions were multiplied
together - the channel transfer function H(f), the signal-
matched filter spectrum |S(f)l2, and the equalization filter
transfer function Hc(f). The remainder of the simulation
program was unchanged. For the ideal system of Section 5.3,
Hc(f) was set equal to the quadratic function of f which would
exactly compensate for the measured phase characteristic.

For the physically realizable system, Hc(f) was set equal to
the all-pass phase function given in Equation (5-5), where

(5-7) and (5-8) were used to determine W and a.
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